Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/9442
Exportar a:
Title: Determining Weighted, Utility-Based Time Variant Association Rules Using Frequent Pattern Tree
Determinación de las reglas de asociación de variables de tiempo ponderadas basadas en utilidades mediante la aplicación de un árbol de patrones frecuentes
Determinação das regras de associação de variáveis de tempo ponderadas baseadas em utilidades mediante a aplicação de uma árvore de padrões frequentes
Author: Gupta, Pankaj
Bhushan Sagar, Bharat
Resume: Introduction: The present research was conducted at Birla Institute of Technology, off Campus in Noida, India, in 2017.Methods: To assess the efficiency of the proposed approach for information mining a method and an algorithm were proposed for mining time-variant weighted, utility-based association rules using fp-tree.Results: A method is suggested to find association rules on time-oriented frequency-weighted, utility-based data, employing a hierarchy for pulling-out item-sets and establish their association.Conclusions: The dimensions adopted while developing the approach compressed a large time-variant dataset to a smaller data structure at the same time fp-tree was kept away from the repetitive dataset, which finally gave us a noteworthy advantage in articulations of time and memory use.Originality: In the current period, high utility recurrent-pattern pulling-out is one of the mainly noteworthy study areas in time-variant information mining due to its capability to account for the frequency rate of item-sets and assorted utility rates of every item-set. This research contributes to maintain it at a corresponding level, which ensures to avoid generating a big amount of candidate-sets, which ensures further development of less execution time and search spaces.Limitations: The research results demonstrated that the projected approach was efficient on tested datasets with pre-defined weight and utility calculations.
Introducción: la presente investigación se realizó en el Birla Institute of Technology, fuera del campus en Noida, India, en 2017.Métodos: para evaluar la eficacia del enfoque propuesto para la minería de información, se propusieron un método y un algoritmo para minar las reglas de asociación basadas en la utilidad ponderada en el tiempo usando un árbol de patrones frecuentes (fp).Resultados: se sugiere un método para encontrar reglas de asociación en datos basados en la utilidad ponderada en frecuencia orientada al tiempo, que emplea una jerarquía para extraer conjuntos de elementos y establecer su asociación.Conclusiones: las dimensiones adoptadas al desarrollar el enfoque comprimieron un gran conjunto de datos de variante de tiempo hasta alcanzar una estructura de datos más pequeña. A su vez, el árbol fp se mantuvo alejado del conjunto de datos repetitivos, lo que finalmente generó una ventaja considerable en tiempo y uso de memoria.Originalidad: en la actualidad, la extracción de patrones recurrentes de alta utilidad es una de las áreas de estudio más desarrollada en la minería de información con respecto a la variable temporal debido a su capacidad de dar cuenta de la frecuencia de los conjuntos de elementos y las tasas de servicios varios de cada conjunto de elementos. Esta investigación contribuye a mantener el estudio sobre el tema a un buen nivel, lo que permite evitar generar una gran cantidad de conjuntos posibles, y por ende garantiza mayor desarrollo en menores tiempos de ejecución y espacios de búsqueda.Limitaciones: Los resultados de la investigación demostraron que la aproximación fue eficiente en conjuntos de datos probados con cálculos predefinidos de peso y utilidad.
Introdução: esta pesquisa foi realizada no Instituto Birla de Tecnologia e Ciência, fora do campus, em Noida, na Índia, em 2017. Métodos: para avaliar a eficácia do enfoque proposto para mineração de informação, foram propostos um método e um algoritmo para minerar as regras de associação baseadas na utilidade ponderada no tempo usando uma árvore de padrões frequentes (fp).Resultados: é recomendado um método para encontrar regras de associação nos dados baseados na utilidade ponderada em frequência orientada ao tempo, que emprega uma hierarquia para extrair conjuntos de elementos e estabelecer a associação entre eles.Conclusões: as dimensões utilizadas ao desenvolver o enfoque comprimiram um grande conjunto de dados de variante de tempo até alcançar uma estrutura de dados menor, enquanto isso, a árvore fp se manteve distante do conjunto de dados repetitivos, o que finalmente gerou uma vantagem considerável em tempo e uso de memória.Originalidade: na atualidade, a extração de padrões recorrentes de alta utilidade é uma das áreas de estudo mais desenvolvidas na mineração de informação com respeito à variável temporal, devido a sua capacidade de dar conta da frequência dos conjuntos de elementos e das taxas de serviços vários de cada conjunto de elementos. Esta pesquisa ajuda a manter o estudo desse tema em um nível avançado, o que garante evitar gerar uma grande quantidade de conjuntos possíveis e, dessa forma, um maior desenvolvimento em um menor tempo de execução e espaço de busca.Limitações: os resultados da pesquisa demonstraram que a aproximação foi eficiente em conjuntos de dados provados com cálculos predefinidos de peso e utilidade.
Type: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Other Identifiers: https://revistas.ucc.edu.co/index.php/in/article/view/2228
10.16925/.v14i0.2228
metadata.dc.rights: Copyright (c) 2018 Journal of Engineering and Education
http://creativecommons.org/licenses/by-nc-nd/4.0/
Full text: Ingeniería Solidaria; Vol 14 No 25 (2018): special issue; 1-11
Ingeniería Solidaria; Vol. 14 Núm. 25 (2018): special issue; 1-11
Ingeniería Solidaria; v. 14 n. 25 (2018): special issue; 1-11
2357-6014
1900-3102
Appears in Collections:Ingeniería Solidaria

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.