Please use this identifier to cite or link to this item: https://repository.ucc.edu.co/handle/20.500.12494/44852
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArbelaez Perez, Oscar Felipe-
dc.creatorAvendaño Gonzalez, Anderson Alexander-
dc.creatorOgaza Diaz, Yeiner Jose-
dc.date.accessioned2022-05-09T20:54:50Z-
dc.date.available2022-05-09T20:54:50Z-
dc.date.issued2022-04-21-
dc.identifier.urihttps://repository.ucc.edu.co/handle/20.500.12494/44852-
dc.descriptionLos problemas del impacto ambiental negativo asociado con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la incorporación de sustitutos de los materiales tradicionales que permiten mejorar las propiedades mecánicas y disminuir las emisiones. Este trabajo presenta una revisión de los trabajos reportados entre 2000 y 2021, esta revisión se de-limitó a documentos tipo artículo que reportaran el cálculo de las emisiones de CO2 durante la preparación de hormigones tradicionales y modificados. Se encontró que las emisiones dependen del tipo y del porcentaje de incorporación de los susti-tutos, así como de la resistencia requerida, siendo menor la disminución para los sustitutos del cemento. Se discuten las perspectivas futuras frente al tema y los desafíos que enfrenta la industria del hormigón. Se espera con esta revisión motivar el reporte de las emisiones de CO2 en hormigones modificados como parámetro de cuantificación del impacto ambiental en la industria del hormigón.es
dc.description.abstractThe problems of the negative environmental impact associated with the high emission of CO2 during the preparation of con-crete, has required the incorporation of substitutes for traditional precursors that allow to improve mechanical properties and reduce emissions. This paper presents a review of the works reported between 2000 and 2021, This review was delimited to articles that included the calculation of CO2 emissions during the preparation of traditional and modified concretes. It was found that the emissions depend on the type and percentage of incorporation of the substitutes, as well as the required re-sistance, with less decrease for cement substitutes. Future perspectives on the topic and challenges facing the concrete industry are discussed. It is expected with this review to motivate the reporting of CO2 emissions in modified concrete as a parameter for quantifying the environmental impact in the concrete industryes
dc.description.provenanceSubmitted by yeiner jose ogaza diaz (yeiner.ogazad@campusucc.edu.co) on 2022-04-21T22:17:34Z No. of bitstreams: 3 2022_emisiones_CO2_hormigón-formatolicenciauso.pdf: 928390 bytes, checksum: 830db00cf883ec6326ee07510348b52b (MD5) 2022_emisiones_CO2_hormigón-actasustentacion.pdf: 73749 bytes, checksum: 26c1f72a2617d552a0b33032b1ba06f5 (MD5) 2022_emisiones_CO2_hormigón.pdf: 335576 bytes, checksum: a3c0a403c885c3a702714db1fdaccb0e (MD5)en
dc.description.provenanceApproved for entry into archive by Angie Yoreli Sánchez Martínez (angie.sanchezma@ucc.edu.co) on 2022-05-09T20:54:50Z (GMT) No. of bitstreams: 3 2022_emisiones_CO2_hormigón-formatolicenciauso.pdf: 928390 bytes, checksum: 830db00cf883ec6326ee07510348b52b (MD5) 2022_emisiones_CO2_hormigón-actasustentacion.pdf: 73749 bytes, checksum: 26c1f72a2617d552a0b33032b1ba06f5 (MD5) 2022_emisiones_CO2_hormigón.pdf: 335576 bytes, checksum: a3c0a403c885c3a702714db1fdaccb0e (MD5)en
dc.description.provenanceMade available in DSpace on 2022-05-09T20:54:50Z (GMT). No. of bitstreams: 3 2022_emisiones_CO2_hormigón-formatolicenciauso.pdf: 928390 bytes, checksum: 830db00cf883ec6326ee07510348b52b (MD5) 2022_emisiones_CO2_hormigón-actasustentacion.pdf: 73749 bytes, checksum: 26c1f72a2617d552a0b33032b1ba06f5 (MD5) 2022_emisiones_CO2_hormigón.pdf: 335576 bytes, checksum: a3c0a403c885c3a702714db1fdaccb0e (MD5) Previous issue date: 2022-04-21en
dc.format.extent117 p.es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigadoes
dc.subjectHormigón sosteniblees
dc.subjectHuella de carbonoes
dc.subjectAnálisis de ciclo de vidaes
dc.subjectEmisiones de CO2es
dc.subject.classificationTG 2022 ICI 44852es
dc.subject.otherSustainable concretees
dc.subject.otherCarbon footprintes
dc.subject.otherLife cycle assessmentes
dc.subject.otherCO2 emissionses
dc.titleEmisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literaturaes
dc.typeTrabajos de grado - Pregradoes
dc.rights.licenseNINGUNAes
dc.publisher.departmentMedellínes
dc.publisher.programIngeniería Civiles
dc.creator.mailanderson.avendanog@campusucc.edu.coes
dc.creator.mailyeiner.ogazad@campusucc.edu.coes
dc.identifier.bibliographicCitationAvendaño Gonzalez, A. A. y Ogaza Diaz, Y. J. (2022). Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/44852es
dc.rights.accessRightsrestrictedAccesses
dc.source.bibliographicCitationAdesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1(November), 100004. https://doi.org/10.1016/j.envc.2020.100004es
dc.source.bibliographicCitationAlnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Abutaha, F., Alqedra, M. A., & Nayaka, R. R. (2018). Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. Journal of Cleaner Production, 203, 822–835. https://doi.org/10.1016/j.jclepro.2018.08.292es
dc.source.bibliographicCitationAlsalman, A., Assi, L. N., Kareem, R. S., Carter, K., & Ziehl, P. (2021). Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems, 3(April), 100047. https://doi.org/10.1016/j.cesys.2021.100047es
dc.source.bibliographicCitationAlsubari, B., Shafigh, P., Jumaat, M. (2016). Utilization of high-volume treated palm oil fuel ash to produce sustainable self- compacting concrete. Journal of Cleaner Production, 137, 982-996. https://doi.org/10.1016/j.jclepro.2016.07.133es
dc.source.bibliographicCitationAprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010es
dc.source.bibliographicCitationBaynes, T. M., Crawford, R. H., Schinabeck, J., Bontinck, P. A., Stephan, A., Wiedmann, T., Lenzen, M., Kenway, S., Yu, M., Teh, S. H., Lane, J., Geschke, A., Fry, J., & Chen, G. (2018). The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 164(2018), 14–20. https://doi.org/10.1016/j.enbuild.2017.12.056es
dc.source.bibliographicCitationBerenguer, R. A., Capraro, A. P. B., Farias de Medeiros, M. H., Carneiro, A. M. P., & de Oliveira, R. A. (2020). Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide. Journal of Environmental Chemical Engineering, 8(2), 103655. https://doi.org/10.1016/j.jece.2020.103655es
dc.source.bibliographicCitationBoarder, R. F. W., Owens, P. L., & Khatib, J. M. (2016). The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete. In Sustainability of Construction Materials (Second Edi, Issue December). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100370-1.00010-xes
dc.source.bibliographicCitationBostanci, S. C., Limbachiya, M., & Kew, H. (2018). Use of recycled aggregates for low carbon and cost effective concrete construction. Journal of Cleaner Production, 189, 176–196. https://doi.org/10.1016/j.jclepro.2018.04.090es
dc.source.bibliographicCitationCaldas, L. R., Saraiva, A. B., Lucena, A. F. P., Da Gloria, M. Y., Santos, A. S., & Filho, R. D. T. (2021). Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resources, Conservation and Recycling, 166(August 2020). https://doi.org/10.1016/j.resconrec.2020.105346es
dc.source.bibliographicCitationCelik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003es
dc.source.bibliographicCitationChong, B. W., Othman, R., Ramadhansyah, P. J., Doh, S. I., & Li, X. (2020). Properties of concrete with eggshell powder: A review. Physics and Chemistry of the Earth, 120(December 2019), 102951. https://doi.org/10.1016/j.pce.2020.102951es
dc.source.bibliographicCitationCosta, F. N., & Ribeiro, D. V. (2020). Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, 276, 123302. https://doi.org/10.1016/j.jclepro.2020.123302es
dc.source.bibliographicCitationDepaa, R. A. B., Priyadarshini, V., Hemamalinie, A., Francis Xavier, J., & Surendrababu, K. (2020). Assessment of strength properties of concrete made with rice husk ash. Materials Today: Proceedings, 45, 6724–6727. https://doi.org/10.1016/j.matpr.2020.12.605es
dc.source.bibliographicCitationDixit, M. K. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 79(October 2016), 390–413. https://doi.org/10.1016/j.rser.2017.05.051es
dc.source.bibliographicCitationEsmaeili, J., & Oudah Al-Mwanes, A. (2021). A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Materials Today: Proceedings, 42, 1958–1965. https://doi.org/10.1016/j.matpr.2020.12.242es
dc.source.bibliographicCitationFlower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1007/s11367-007-0327-3es
dc.source.bibliographicCitationFu, Q., Xu, W., Zhao, X., Bu, M. X., Yuan, Q., & Niu, D. (2021). The microstructure and durability of fly ash-based geopolymer concrete: A review. Ceramics International, 47(21), 29550–29566. https://doi.org/10.1016/j.ceramint.2021.07.190es
dc.source.bibliographicCitationGao, T., Shen, L., Shen, M., Chen, F., Liu, L., & Gao, L. (2015). Analysis on differences of carbon dioxide emission from cement production and their major determinants. Journal of Cleaner Production, 103, 160–170. https://doi.org/10.1016/j.jclepro.2014.11.026es
dc.source.bibliographicCitationGarcía-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1), 3–12. https://doi.org/10.1007/s11367- 013-0614-0es
dc.source.bibliographicCitationGartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021es
dc.source.bibliographicCitationGencel, O., Karadag, O., Oren, O. H., & Bilir, T. (2021). Steel slag and its applications in cement and concrete technology: A review. Construction and Building Materials, 283, 122783. https://doi.org/10.1016/j.conbuildmat.2021.122783es
dc.source.bibliographicCitationGursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112, 823–836. https://doi.org/10.1016/j.jclepro.2015.06.029es
dc.source.bibliographicCitationHabert, G., & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 31(6), 397–402. https://doi.org/10.1016/j.cemconcomp.2009.04.001es
dc.source.bibliographicCitationHamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K., & Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review. Construction and Building Materials, 265, 120357. https://doi.org/10.1016/j.conbuildmat.2020.120357es
dc.source.bibliographicCitationHamada, H. M., Tayeh, B. A., Al-Attar, A., Yahaya, F. M., Muthusamy, K., & Humada, A. M. (2020). The present state of the use of eggshell powder in concrete: A review. Journal of Building Engineering, 32(April), 101583. https://doi.org/10.1016/j.jobe.2020.101583es
dc.source.bibliographicCitationHamada, H. M., Thomas, B. S., Yahaya, F. M., Muthusamy, K., Yang, J., Abdalla, J. A., & Hawileh, R. A. (2021). Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. Journal of Building Engineering, 40(July 2020), 102286. https://doi.org/10.1016/j.jobe.2021.102286es
dc.source.bibliographicCitationHanif, A., Kim, Y., Lu, Z., & Park, C. (2017). Early-age behavior of recycled aggregate concrete under steam curing regime. Journal of Cleaner Production, 152, 103–114. https://doi.org/10.1016/j.jclepro.2017.03.107es
dc.source.bibliographicCitationIslam, M., Mo, K., Alengaram, U. (2016). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Jorunal of Cleaner Production, 115, 307-314. https://doi.org/10.1016/j.jclepro.2015.12.051es
dc.source.bibliographicCitationJagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608–617. https://doi.org/10.1016/j.conbuildmat.2018.05.037es
dc.source.bibliographicCitationJani, Y., & Hogland, W. (2014). Waste glass in the production of cement and concrete - A review. In Journal of Environmental Chemical Engineering (Vol. 2, Issue 3). Elsevier. https://doi.org/10.1016/j.jece.2014.03.016es
dc.source.bibliographicCitationJha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. https://doi.org/10.1016/j.matpr.2020.09.751es
dc.source.bibliographicCitationJian, S.-M., Wu, B., & Hu, N. (2021). Environmental impacts of three waste concrete recycling strategies for prefabricated components through comparative life cycle assessment. Journal of Cleaner Production, 328(381), 129463. https://doi.org/10.1016/j.jclepro.2021.129463es
dc.source.bibliographicCitationJiang, W., Li, X., Lv, Y., Jiang, D., Liu, Z., & He, C. (2020). Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Construction and Building Materials, 238, 117683. https://doi.org/10.1016/j.conbuildmat.2019.117683es
dc.source.bibliographicCitationJiménez, L. F., Domínguez, J. A., & Vega-Azamar, R. E. (2018). Carbon footprint of recycled aggregate concrete. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/7949741es
dc.source.bibliographicCitationKajaste, R., & Hurme, M. (2016). Cement industry greenhouse gas emissions - Management options and abatement cost. Journal of Cleaner Production, 112, 4041–4052. https://doi.org/10.1016/j.jclepro.2015.07.055es
dc.source.bibliographicCitationKim, T., Tae, S., & Roh, S. (2013). Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renewable and Sustainable Energy Reviews, 25, 729–741. https://doi.org/10.1016/j.rser.2013.05.013es
dc.source.bibliographicCitationKrithika, J., & Ramesh Kumar, G. B. (2020). Influence of fly ash on concrete - A systematic review. Materials Today: Proceedings, 33, 906–911. https://doi.org/10.1016/j.matpr.2020.06.425es
dc.source.bibliographicCitationKulkarni, N. G., & Rao, A. B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, 1396–1406. https://doi.org/10.1016/j.jclepro.2016.06.152es
dc.source.bibliographicCitationKumar, V. K., Priya, A. K., Manikandan, G., Naveen, A. S., Nitishkumar, B., & Pradeep, P. (2020). Review of materials used in light weight concrete. Materials Today: Proceedings, 37(Part 2), 3538–3539. https://doi.org/10.1016/j.matpr.2020.09.425es
dc.source.bibliographicCitationLee, J. W., Jang, Y. Il, Park, W. S., Yun, H. Do, & Kim, S. W. (2020). The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs. International Journal of Concrete Structures and Materials, 14(1). https://doi.org/10.1186/s40069-020-0392-6es
dc.source.bibliographicCitationManjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47, 3637–3644. https://doi.org/10.1016/j.matpr.2021.01.248es
dc.source.bibliographicCitationMarcea, R. L., & Lau, K. K. (1992). Carbon Dioxide Implications of Building Materials. Journal of Forest Engineering, 3(2), 37–43. https://doi.org/10.1080/08435243.1992.10702637es
dc.source.bibliographicCitationMarinković, S., Carević, V., & Dragaš, J. (2021). The role of service life in Life Cycle Assessment of concrete structures. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125610es
dc.source.bibliographicCitationMathew, S. P., Nadir, Y., & Muhammed Arif, M. (2019). Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2019.11.249es
dc.source.bibliographicCitationPlaza, P., Sáez del Bosque, I. F., Frías, M., Sánchez de Rojas, M. I., & Medina, C. (2021). Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions. Construction and Building Materials, 285, 122926. https://doi.org/10.1016/j.conbuildmat.2021.122926es
dc.source.bibliographicCitationPomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment – What does the evidence say? Journal of Environmental Management, 181, 687–700. https://doi.org/10.1016/j.jenvman.2016.08.036es
dc.source.bibliographicCitationRaheem, A. A., Abdulwahab, R., & Kareem, M. A. (2021). Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review. Journal of Cleaner Production, 290, 125852. https://doi.org/10.1016/j.jclepro.2021.125852es
dc.source.bibliographicCitationRaheem, Akeem A., & Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. Journal of Building Engineering, 31(April), 101428. https://doi.org/10.1016/j.jobe.2020.101428es
dc.source.bibliographicCitationRama Jyosyula, S. K., Surana, S., & Raju, S. (2020). Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building. Materials Today: Proceedings, 27, 984–990. https://doi.org/10.1016/j.matpr.2020.01.294es
dc.source.bibliographicCitationRashid, K., Yazdanbakhsh, A., & Rehman, M. U. (2019). Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. Journal of Cleaner Production, 224, 396–410. https://doi.org/10.1016/j.jclepro.2019.03.197es
dc.source.bibliographicCitationRobalo, K., Costa, H., do Carmo, R., & Júlio, E. (2021). Experimental development of low cement content and recycled construction and demolition waste aggregates concrete. Construction and Building Materials, 273, 121680. https://doi.org/10.1016/j.conbuildmat.2020.121680es
dc.source.bibliographicCitationSabău, M., Bompa, D. V., & Silva, L. F. O. (2021). Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geoscience Frontiers, 12(6). https://doi.org/10.1016/j.gsf.2021.101235es
dc.source.bibliographicCitationSathiparan, N. (2021). Utilization prospects of eggshell powder in sustainable construction material – A review. Construction and Building Materials, 293, 123465. https://doi.org/10.1016/j.conbuildmat.2021.123465es
dc.source.bibliographicCitationScharff, H. (2014). Landfill reduction experience in The Netherlands. Waste Management, 34(11), 2218–2224. https://doi.org/10.1016/j.wasman.2014.05.019es
dc.source.bibliographicCitationSerres, N., Braymand, S., & Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. Journal of Building Engineering, 5, 24–33. https://doi.org/10.1016/j.jobe.2015.11.004es
dc.source.bibliographicCitationSoliman, N. A., & Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Construction and Building Materials, 125, 600–612. https://doi.org/10.1016/j.conbuildmat.2016.08.073es
dc.source.bibliographicCitationSyahida Adnan, Z., Ariffin, N. F., Syed Mohsin, S. M., & Abdul Shukor Lim, N. H. (2021). Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.02.400es
dc.source.bibliographicCitationTait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. https://doi.org/10.1007/s11367-016-1045-5es
dc.source.bibliographicCitationThomas, B. S., Kumar, S., & Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renewable and Sustainable Energy Reviews, 80(April), 550–561. https://doi.org/10.1016/j.rser.2017.05.128es
dc.source.bibliographicCitationTorres, V., Sande, D., Sadique, M., Pineda, P., Bras, A., Atherton, W., & Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete. Journal of Building Engineering, 39(September 2020), 102277. https://doi.org/10.1016/j.jobe.2021.102277es
dc.source.bibliographicCitationTosic, N., & Dragas, J. (2016). Use of Recycled and Waste Materials in Concrete : A Serbian perspective Use of recycled and waste materials in concrete a serbian perspective, Second International Student International Conference, Belgrade, Serbia.es
dc.source.bibliographicCitationTurk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45(305), 194–205. https://doi.org/10.1016/j.wasman.2015.06.035es
dc.source.bibliographicCitationTurner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023es
dc.source.bibliographicCitationVishwakarma, V., & Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review. Construction and Building Materials, 162, 96–103. https://doi.org/10.1016/j.conbuildmat.2017.11.174es
dc.source.bibliographicCitationZhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. https://doi.org/10.1016/j.conbuildmat.2019.03.078es
Appears in Collections:Ingeniería Civil

Files in This Item:
File Description SizeFormat 
2022_Emisiones_CO2_Hormigon-LicenciaUso.pdf
  Restricted Access
Licencia Uso906.63 kBAdobe PDFView/Open Request a copy
2022_Emisiones_CO2_Hormigón-Actasustentacion.pdf
  Restricted Access
Acta72.02 kBAdobe PDFView/Open Request a copy
2022_Emisiones_CO2_Hormigón.pdf
  Restricted Access
Trabajo de grado327.71 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.