Please use this identifier to cite or link to this item: https://repository.ucc.edu.co/handle/20.500.12494/43426
Full metadata record
DC FieldValueLanguage
dc.coverage.temporal11 p.es
dc.creatorBonilla Aldana, Diana-
dc.creatorFaccini Martínez, Alvaro-
dc.creatorVallejo-Timaran, Dario-
dc.creatorBocanegra, Flor-
dc.creatorRuiz Saenz, Julian-
dc.creatorPaniz Mondolfi, Alberto-
dc.creatorRodriguez-Morales, Alfonso-
dc.creatorSuarez, Jose-
dc.date.accessioned2022-01-25T20:49:25Z-
dc.date.available2022-01-25T20:49:25Z-
dc.date.issued2021-06-
dc.identifier.issn2322-4568es
dc.identifier.urihttps://dx.doi.org/10.54203/scil.2021.wvj42es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/43426-
dc.description.abstractOver the last decades, global warming has significantly affected the world’s climate, negatively impacting numerous ecosystems (Cardenas et al., 2006; Beyer et al., 2021; Dupraz and Burnand, 2021). The accumulating influences of climate change, including the rise of the earth’s surface temperature and sea level as well as melting glaciers among many other direct and indirect effects (Calel et al., 2020; Harvey et al., 2020), are reshaping, not only the ecological landscape of many world regions, but also setting the stage for emerging diseases sceneries. Floods, droughts, hurricanes (Zambrano et al., 2021), heat waves and surging fires across all continents (Bonilla-Aldana et al., 2019) are all part of the human-driven fingerprint that has led to climate change (Figure 1). These effects have also resulted in a massive reduction of vegetation across many regions around the globe. As the legendary British rock 'n' roll band Pink Floyd once sang in their most celebrated song “High Hopes”, “…the grass was greener…” (Pink Floyd, dixit), framed in an environmental context these lyrics should call for a reflection on how climate change is leaving its mark on earth’s landscapees
dc.description.provenanceSubmitted by julian Ruiz Saenz (julian.ruizs@campusucc.edu.co) on 2022-01-24T23:41:24Z No. of bitstreams: 2 WVJ 11(2) 313-316, June 25, 2021 (1).pdf: 522892 bytes, checksum: 98fd94156d7dcc09082d7160efc50540 (MD5) Licencia de uso WVJ.pdf: 208788 bytes, checksum: 1316183f92e2970307480fe41b91e0fa (MD5)en
dc.description.provenanceApproved for entry into archive by Jorge Omar Valencia Patiño (jorge.valenciap@ucc.edu.co) on 2022-01-25T20:49:25Z (GMT) No. of bitstreams: 2 WVJ 11(2) 313-316, June 25, 2021 (1).pdf: 522892 bytes, checksum: 98fd94156d7dcc09082d7160efc50540 (MD5) Licencia de uso WVJ.pdf: 208788 bytes, checksum: 1316183f92e2970307480fe41b91e0fa (MD5)en
dc.description.provenanceMade available in DSpace on 2022-01-25T20:49:25Z (GMT). No. of bitstreams: 2 WVJ 11(2) 313-316, June 25, 2021 (1).pdf: 522892 bytes, checksum: 98fd94156d7dcc09082d7160efc50540 (MD5) Licencia de uso WVJ.pdf: 208788 bytes, checksum: 1316183f92e2970307480fe41b91e0fa (MD5) Previous issue date: 2021-06en
dc.format.extent313-316es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramangaes
dc.relation.ispartofWorld’s Veterinary Journaes
dc.relation.isversionofhttps://wvj.science-line.com/attachments/article/65/WVJ%2011(2)%20313-316,%20June%2025,%202021.pdfes
dc.subjectViruses
dc.subjectClimate Changees
dc.subjectEcosystemses
dc.subjectOne Healthes
dc.titleThe Grass Was Greener-Climate Change, One Health, and the High Hopes to Mitigate COVID-19, Avian Influenza, and other Zoonotic Emerging Diseaseses
dc.typeArtículos Científicoses
dc.rights.licenseAtribuciónes
dc.publisher.departmentBucaramangaes
dc.publisher.programMedicina veterinaria y zootecniaes
dc.creator.mailjulian.ruizs@campusucc.edu.coes
dc.identifier.bibliographicCitationBonilla-Aldana DK, Faccini-Martínez ÁA, Vallejo-Timaran DA, Bocanegra-Viteri FdeM, Ruiz-Saenz J, Paniz-Mondolfi AE, Rodriguez-Morales AJ, and Suárez JA (2021). The Grass Was Greener - Climate Change, One Health, and the High Hopes to Mitigate COVID-19, Avian Influenza, and other Zoonotic Emerging Diseases. World Vet. J., 11 (2): 313-316.es
dc.rights.accessRightsopenAccesses
dc.source.bibliographicCitationBeyer RM, Manica A and Mora C (2021). Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Science of the Total Environment, 767: Article number 145413. DOI: https://www.doi.org/10.1016/j.scitotenv.2021.145413es
dc.source.bibliographicCitationBonilla-Aldana DK, Aguirre-Florez M, Villamizar-Pena R, Gutierrez-Ocampo E, Henao-Martinez JF, Cvetkovic-Vega A, Dhama K, Rabaan A, Sah R, Rodriguez-Morales AJ, et al. (2020a). After SARS-CoV-2, will h5n6 and other influenza viruses follow the pandemic path? Infezioni in Medicina, 28(4): 475-485. Available at: https://pubmed.ncbi.nlm.nih.gov/33257621/es
dc.source.bibliographicCitationBonilla-Aldana DK, Dhama K and Rodriguez-Morales AJ (2020b). Revisiting the one health approach in the context of covid-19: A look into the ecology of this emerging disease. Advances in Animal and Veterinary Sciences, 8(3): 234-237. Available at: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-822918es
dc.source.bibliographicCitationBonilla-Aldana DK, Holguin-Rivera Y, Perez-Vargas S, Trejos-Mendoza AE, Balbin-Ramon GJ, Dhama K, Barato P, Lujan-Vega C, and Rodriguez-Morales AJ (2020c). Importance of the one health approach to study the sars-cov-2 in latin america. One Health, 10: Article number 100147. DOI: https://www.doi.org/10.1016/j.onehlt.2020.100147es
dc.source.bibliographicCitationBonilla-Aldana DK, Jimenez-Diaz SD, Arango-Duque JS, Aguirre-Florez M, Balbin-Ramon GJ, Paniz-Mondolfi A, Suarez JA, Pachar MR, Perez-Garcia LA, Delgado-Noguera LA et al. (2021). Bats in ecosystems and their wide spectrum of viral infectious potential threats: Sars-Cov-2 and other emerging viruses. International Journal of Infectious Diseases, 102: 87-96. DOI: https://www.doi.org/10.1016/j.ijid.2020.08.050es
dc.source.bibliographicCitationBonilla-Aldana DK, Suarez JA, Franco-Paredes C, Vilcarromero S, Mattar S, Gomez-Marin JE, Villamil-Gomez WE, Ruiz-Saenz J, Cardona-Ospina JA, Idarraga-Bedoya SE et al. (2019). Brazil burning! What is the potential impact of the amazon wildfires on vector-borne and zoonotic emerging diseases? - a statement from an international experts meeting. Travel Medicine and Infectious Diseases, 31: Article number 101474. DOI: https://www.doi.org/10.1016/j.tmaid.2019.101474es
dc.source.bibliographicCitationBreed AC, Yu M, Barr JA, Crameri G, Thalmann CM, and Wang LF (2010). Prevalence of henipavirus and rubulavirus antibodies in pteropid bats, Papua new guinea. Emerging Infectious Diseases, 16(12): 1997-1999. DOI: https://www.doi.org/10.3201/eid1612.100879es
dc.source.bibliographicCitationCalel R, Chapman SC, Stainforth DA, and Watkins NW (2020). Temperature variability implies greater economic damages from climate change. Nature Communications, 11(1): Article number 5028. DOI: https://www.doi.org/10.1038/s41467-020-18797-8es
dc.source.bibliographicCitationCardenas R, Sandoval CM, Rodriguez-Morales AJ, and Franco-Paredes C (2006). Impact of climate variability in the occurrence of leishmaniasis in northeastern Colombia. American Journal of Tropical Medicine Hygiene, 75(2): 273-277. Available at: https://pubmed.ncbi.nlm.nih.gov/16896132/es
dc.source.bibliographicCitationChowdhury FR, Ibrahim QSU, Bari MS, Alam MMJ, Dunachie SJ, Rodriguez-Morales AJ, and Patwary MI (2018). The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS ONE, 13(6): e0199579. DOI: https://www.doi.org/10.1371/journal.pone.0199579es
dc.source.bibliographicCitationChowdhury FR, Ibrahim QSU, Bari MS, Alam MMJ, Dunachie SJ, Rodriguez-Morales AJ, and Patwary MI (2020). Correction: The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS ONE, 15(4): e0232285. DOI: https://www.doi.org/10.1371/journal.pone.0232285es
dc.source.bibliographicCitationChua KB, Chua BH, and Wang CW (2002). Anthropogenic deforestation, El Nino and the emergence of Nipah virus in Malaysia. Malaysian Journal of Pathology, 24(1): 15-21. Available at: https://pubmed.ncbi.nlm.nih.gov/16329551/es
dc.source.bibliographicCitationDhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, and Rodriguez-Morales AJ (2020). Coronavirus disease 2019-covid-19. Clinical Microbiology Reviews, 33(4): e00028-20. DOI: https://www.doi.org/10.1128/CMR.00028-20es
dc.source.bibliographicCitationDupraz J, and Burnand B (2021). Role of health professionals regarding the impact of climate change on health-an exploratory review. International Journal of Environmental Research and Public Health, 18(6): 3222. DOI: https://www.doi.org/10.3390/ijerph18063222es
dc.source.bibliographicCitationEscalera-Antezana JP, Rodriguez-Villena OJ, Arancibia-Alba AW, Alvarado-Arnez LE, Bonilla-Aldana DK, and Rodriguez-Morales AJ (2020). Clinical features of fatal cases of Chapare virus hemorrhagic fever originating from rural la Paz, bolivia, 2019: A cluster analysis. Travel Medicine and Infectious Diseases, 36: Article number 101589. DOI: https://www.doi.org/10.1016/j.tmaid.2020.101589es
dc.source.bibliographicCitationEuropean Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux E Staubach C, Terregino C, et al. (2021). Avian influenza overview December 2020 - February 2021. EFSA Journal, 19(3): e06497. DOI: https://www.doi.org/10.2903/j.efsa.2021.6497es
dc.source.bibliographicCitationHarvey JA, Heinen R, Gols R, and Thakur MP (2020). Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Global Changes and Biology, 26(12): 6685-6701. DOI: https://www.doi.org/10.1111/gcb.15377es
dc.source.bibliographicCitationKalbus A, de Souza Sampaio V, Boenecke J, and Reintjes R (2021). Exploring the influence of deforestation on dengue fever incidence in the Brazilian Amazonas State. PLoS ONE, 16(1): e0242685. DOI: https://www.doi.org/10.1371/journal.pone.0242685es
dc.source.bibliographicCitationLaporta GZ, Ilacqua RC, Bergo ES, Chaves LSM, Rodovalho SR, Moresco GG, Figueira EAG, Massad E, de Oliveira TMP, Bickersmith SA et al. (2021). Malaria transmission in landscapes with varying deforestation levels and timelines in the amazon: A longitudinal spatiotemporal study. Scientific Reports, 11(1): Article number 6477. DOI: https://www.doi.org/10.1038/s41598- 021-85890-3es
dc.source.bibliographicCitationMirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, and Schraufnagel DE (2016). Climate change and respiratory infections. Annals of the American Thoracic Society, 13(8): 1223-1230. DOI: https://www.doi.org/10.1513/AnnalsATS.201511-729PSes
dc.source.bibliographicCitationMohammed MEA (2021). The percentages of sars-cov-2 protein similarity and identity with SARS-CoV and batcov ratg13 proteins can be used as indicators of virus origin. Journal of Proteins and Proteomics, pp. 1-11. DOI: https://www.doi.org/10.1007/s42485-021-00060-3es
dc.source.bibliographicCitationProMedMail (2021a). Avian influenza, human (02): Russia, h5n8, 1st case. Available at: Https://promedmail.Org/promedpost/?Id=8204014es
dc.source.bibliographicCitationProMEDmail (2021b). Promedmail - avian influenza, human (09): China (JS) H10N3, 1st rep. Available at: Https://promedmail.Org/promed-post/?Id=20210602.8416833es
dc.source.bibliographicCitationProMEDmail (2021c). Promedmail - avian influenza (45): Europe (UK, Croatia) seal, fox, wild bird, hpai h5n8, oie. Available at: Https://promedmail.Org/promed-post/?Id=20210317.8252821es
dc.source.bibliographicCitationRodriguez-Morales AJ (2013). Climate change, climate variability and brucellosis. Recent Patents in Antiinfective Drug Discovery, 8(1): 4-12. DOI: https://www.doi.org/10.2174/1574891x11308010003es
dc.source.bibliographicCitationThe Lancet Infectious D (2021). In an ocean of ashes, islands of order: Who's SARS-CoV-2 origin report. Lancet Infectious Diseases, 21(5): Article number 579. DOI: https://www.doi.org/10.1016/S1473-3099(21)00213-9es
dc.source.bibliographicCitationUppal PK (2000). Emergence of Nipah virus in Malaysia. Annans of the New York Academy of Sciences, 916: 354-357. DOI: https://www.doi.org/10.1111/j.1749-6632.2000.tb05312.xes
dc.source.bibliographicCitationYan Yam EL (2020). Climate change and the origin of SARS-CoV-2. Journal of Travel Medicine, 27(8): 224. DOI: https://www.doi.org/10.1093/jtm/taaa224es
dc.source.bibliographicCitationZambrano LI, Fuentes-Barahona IC, Henriquez-Marquez KI, Vasquez-Bonilla WO, Sierra M, Munoz-Lara F, Luna C, Bonilla-Aldana DK, and Rodriguez-Morales AJ (2021). Covid-19 and hurricanes: The impact of natural disasters during a pandemic in honduras, central america. Prehospital and Disaster Medicine, 36(2): 246-248. DOI: https://www.doi.org/10.1017/S1049023X21000182es
dc.source.bibliographicCitationZhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270-273. DOI: https://www.doi.org/10.1038/s41586-020-2012-7es
dc.date.embargoEnd2021-06-
dc.description.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000213748es
dc.description.orcidhttps://orcid.org/0000-0002-1447-1458es
dc.description.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000695es
dc.description.googlescholarhttps://scholar.google.com/citations?user=o3Y7mZwAAAAJ&hl=eses
Appears in Collections:Medicina Veterinaria Zootecnia

Files in This Item:
File Description SizeFormat 
2021_grass_was_greener_climate.pdf510.64 kBAdobe PDFView/Open
2021_grass_was_greener_climate-FormatoLicenciaUso.pdf
  Restricted Access
203.89 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.