Please use this identifier to cite or link to this item:
https://repository.ucc.edu.co/handle/20.500.12494/41369
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Diana C. Lopez C | - |
dc.creator | Tilman Barz | - |
dc.creator | Mariana Peñuela | - |
dc.creator | Villegas Quiceno, Adriana Patricia | - |
dc.date.accessioned | 2021-12-16T22:15:28Z | - |
dc.date.available | 2021-12-16T22:15:28Z | - |
dc.date.issued | 2013 | - |
dc.identifier | https://doi.org/10.1002/btpr.1753 | - |
dc.identifier.issn | 87567938 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.12494/41369 | - |
dc.description.abstract | In this work, a methodology for the model-based identifiable parameter determination (MBIPD) is presented. This systematic approach is proposed to be used for structure and parameter identification of nonlinear models of biological reaction networks. Usually, this kind of problems are over-parameterized with large correlations between parameters. Hence, the related inverse problems for parameter determination and analysis are mathematically ill-posed and numerically difficult to solve. The proposed MBIPD methodology comprises several tasks: (i) model selection, (ii) tracking of an adequate initial guess, and (iii) an iterative parameter estimation step which includes an identifiable parameter subset selection (SsS) algorithm and accuracy analysis of the estimated parameters. The SsS algorithm is based on the analysis of the sensitivity matrix by rank revealing factorization methods. Using this, a reduction of the parameter search space to a reasonable subset, which can be reliably and efficiently estimated from available measurements, is achieved. The simultaneous saccharification and fermentation (SSF) process for bio-ethanol production from cellulosic material is used as case study for testing the methodology. The successful application of MBIPD to the SSF process demonstrates a relatively large reduction in the identified parameter space. It is shown by a cross-validation that using the identified parameters (even though the reduction of the search space), the model is still able to predict the experimental data properly. Moreover, it is shown that the model is easily and efficiently adapted to new process conditions by solving reduced and well conditioned problems. © 2013 American Institute of Chemical Engineers. | es |
dc.description.provenance | Made available in DSpace on 2021-12-16T22:15:28Z (GMT). No. of bitstreams: 0 Previous issue date: 2013 | en |
dc.format.extent | 1082-1064 | es |
dc.publisher | Wiley-Blackwell | es |
dc.relation.ispartof | BIOTECHNOL PROGR | es |
dc.subject | Bio-ethanols | es |
dc.subject | Identifiability analysis | es |
dc.subject | Ill posed problem | es |
dc.subject | Non-linear least squares | es |
dc.subject | Parameter subsets | es |
dc.subject | Sugar-cane bagasse | es |
dc.subject | Algorithms | es |
dc.subject | Bioethanol | es |
dc.subject | Fermentation | es |
dc.subject | Inverse problems | es |
dc.subject | Parameter estimation | es |
dc.subject | Iterative methods | es |
dc.subject | alcohol | es |
dc.subject | algorithm | es |
dc.subject | article | es |
dc.subject | bio-ethanol | es |
dc.subject | biological model | es |
dc.subject | biotechnology | es |
dc.subject | fermentation | es |
dc.subject | identifiability analysis | es |
dc.subject | ill-posed problem | es |
dc.subject | metabolism | es |
dc.subject | nonlinear least squares parameter estimation | es |
dc.subject | nonlinear system | es |
dc.subject | parameter subset selection | es |
dc.subject | SSF process | es |
dc.subject | sugarcane bagasse | es |
dc.subject | bio-ethanol | es |
dc.subject | identifiability analysis | es |
dc.subject | ill-posed problem | es |
dc.subject | nonlinear least squares parameter estimation | es |
dc.subject | parameter subset selection | es |
dc.subject | SSF process | es |
dc.subject | sugarcane bagasse | es |
dc.subject | Algorithms | es |
dc.subject | Biotechnology | es |
dc.subject | Ethanol | es |
dc.subject | Fermentation | es |
dc.subject | Models | es |
dc.subject | Biological | es |
dc.subject | Nonlinear Dynamics | es |
dc.title | Model-based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio-ethanol production | es |
dc.type | Artículo | - |
dc.creator.mail | adriana.villegas@ucc.edu.co | es |
dc.identifier.bibliographicCitation | DC.LC,TB,MP,VILLEGAS AP. Model-based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio-ethanol production. Biotechnol Prog. 2013. 29. (4):p. 1064-1082. . | es |
dc.rights.accessRights | Desconocido | es |
dc.description.orcid | es | |
Appears in Collections: | Artículos Científicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.