Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/35013
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUniversidad Cooperativa de Colombia-
dc.coverage.temporalVol. 8es
dc.creatorColmenares-Quintero, Ramón Fernando-
dc.creatorQuiroga-Parra, Dario de jesus-
dc.creatorRojas, Natalia-
dc.creatorStansfield, Kim E.-
dc.creatorColmenares-Quintero, Juan Carlos-
dc.date.accessioned2021-07-09T16:15:02Z-
dc.date.available2021-07-09T16:15:02Z-
dc.date.issued2021-05-25-
dc.identifier.issn23311916es
dc.identifier.urihttps://doi.org/10.1080/23311916.2021.1935410es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/35013-
dc.descriptionEl desarrollo industrial y económico de los países industrializados, a partir del siglo XIX, ha ido de la mano del desarrollo de la electricidad, del motor de combustión interna, de los ordenadores, de Internet, de la utilización de datos y del uso intensivo del conocimiento centrado en la ciencia y la tecnología. La mayoría de las fuentes de energía convencionales han demostrado ser finitas y agotables. A su vez, las diferentes actividades de producción de bienes y servicios que utilizan combustibles fósiles y energía convencional, han aumentado significativamente la contaminación del medio ambiente, y con ello, han contribuido al calentamiento global. El objetivo de este trabajo fue realizar una aproximación teórica a las tecnologías de análisis de datos e inteligencia de negocio aplicadas a las redes de sistemas eléctricos inteligentes con energías renovables. Para este trabajo se realizó una revisión bibliométrica y bibliográfica sobre Big Data Analytics, herramientas TIC de la industria 4.0 y Business intelligence en diferentes bases de datos disponibles en el dominio público. Los resultados del análisis indican la importancia del uso de la analítica de datos y la inteligencia de negocio en la gestión de las empresas energéticas. El trabajo concluye señalando cómo se está aplicando la inteligencia de negocio y la analítica de datos en ejemplos concretos de empresas energéticas y su creciente importancia en la toma de decisiones estratégicas y operativases
dc.description.abstractThe industrial and economic development of the industrialized countries, from the nineteenth century, has gone hand in hand with the development of electricity, the internal combustion engine, computers, the Internet, data use and the intensive use of knowledge focused on science and the technology. Most conventional energy sources have proven to be finite and exhaustible. In turn, the different production activities of goods and services using fossil fuels and conventional energy, have significantly increased the pollution of the environment, and with it, contributed to global warming. The objective of this work was to carry out a theoretical approach to data analytics and business intelligence technologies applied to smart electrical-system networks with renewable energies. For this paper, a bibliometric and bibliographic review about Big Data Analytics, ICT tools of industry 4.0 and Business intelligence was carried out in different databases available in the public domain. The results of the analysis indicate the importance of the use of data analytics and business intelligence in the management of energy companies. The paper concludes by pointing out how business intelligence and data analytics are being applied in specific examples of energy companies and their growing importance in strategic and operational decision makinges
dc.format.extent1- 15 p.es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigadoes
dc.relation.ispartofCogent Engineeringes
dc.relation.isversionofhttps://www.tandfonline.com/doi/full/10.1080/23311916.2021.1935410es
dc.subjectAnálisis de Big Dataes
dc.subjectRedes inteligenteses
dc.subjectEnergía renovablees
dc.subjectInteligencia empresariales
dc.subjectObjetivos de Desarrollo Sosteniblees
dc.subject.otherBig Data analyticses
dc.subject.otherSmart Gridses
dc.subject.otherRenewable energieses
dc.subject.otherBusiness Intelligencees
dc.subject.otherSustainable Development Goals (SDG)es
dc.titleBig Data Analytics in Smart Grids for Renewable Energy Networks: Systematic Review of Information and Communication Technology Toolses
dc.typeArtículos Científicoses
dc.rights.licenseAtribuciónes
dc.publisher.departmentMedellínes
dc.publisher.programIngeniería mecanicaes
dc.creator.mailramon.colmenaresq@campusucc.edu.coes
dc.creator.maildario.quirogap@campusucc.edu.coes
dc.creator.mailnatalia.rojas@aquatera.co.ukes
dc.creator.mailK.Stansfield@warwick.ac.ukes
dc.creator.mailjcarloscolmenares@ichf.edu.ples
dc.identifier.bibliographicCitationColmenares-Quintero, R.F., Quiroga-Parra, D. J., Rojas, N., Stansfield, K.E. y Colmenares-Quintero, J.C. (2021). Big Data Analytics in Smart Grids for Renewable Energy Networks: Systematic Review of Information and Communication Technology Tools, Cogent Engineering, 8:1, 1905232, DOI: 10.1080/23311916.2021.1935410es
dc.rights.accessRightsopenAccesses
dc.source.bibliographicCitationBhattarai, Bishnu P., Paudyal, Sumit, Luo, Yusheng., Mohanpurka, Manish., Cheung, Kwok., Tonkoski, Reinaldo., Hovsapian, Rob., Myers, Kurt., Zhang, Rui., Zhao, Power., Manic, Milos., Zhang, Song., Zhang, Xiaping. (2019). Big Data Analytics in Smart Grids: State-of-the-Art, Challenges, Opportunities, and Future Directions. IET Research Journals, 2, 2, 1–15.es
dc.source.bibliographicCitationBitlumens (2018). White paper. URL: https://bitlumens.com/assets/bitlumensdata/White_Paper_June_2018.pdfes
dc.source.bibliographicCitationBentov, Iddo, Gabizon, Ariel and Mizrahi, Alex. (2016). Cryptocurrencies without Proof of Work. Springer, Berlin, 142–157. DOI: http://dx.doi.org/10.1007/978-3-662-53357-4_10.es
dc.source.bibliographicCitationBitlumens GmbH. (2018). White Paper May 2018 - BitLumens. Recuperado de https://bitlumens.com/assets/bitlumensdata/White_Paper_June_2018.pdf.es
dc.source.bibliographicCitationColmenares-Quintero, R.F., Maestre-Gongora, G., Pacheco-Moreno, L.J., Rojas, N., Stansfield, K. E. & Colmenares-Quintero, J. C. (2021). Analysis of the energy service in non-interconnected zones of Colombia using business intelligence, Cogent Engineering, 8:1, 1907970, 1-21. URL: https://doi.org/10.1080/23311916.2021.1907970.es
dc.source.bibliographicCitationChen, Hsinchun, Chiang, Roger., and Storey, Veda (2012) Business Intelligence and Analytics from Big Data to Big Impact. MIS Quarterly, 36, 4, 1165-1188.es
dc.source.bibliographicCitationDavid, P. (1990). The dynamo and the computer: a historical perspective on the modern productivity paradox. American Economic Review Papers and Proceedings,80,2,355-361.es
dc.source.bibliographicCitationEscobedo Briones, Guillermo Flavio. and Arroyo Figueroa, Gustavo. (2016). Business Intelligence and Data Analytics (BI&DA) to Support the Operation of Smart Grid - Business Intelligence and Data Analytics (BI&DA) for Smart Grid. Proceedings of the International Conference on Internet of Things and Big Data (IoTBD 2016), 489-496.es
dc.source.bibliographicCitationEscobedo Briones, Guillermo Flavio, and Arroyo-Figueroa, Gustavo. (2017). Big Data & Analytics to Support the Renewable Energy Integration of Smart Grids - Case Study: Power Solar Generation. Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), 267-275.es
dc.source.bibliographicCitationHagfeldt, Anders., Boschloo, Gerrit., Sun, Licheng., Kloo, Lars., and Pettersson, Henrik. (2010) Dye-Sensitized Solar Cells. Chemical Reviews, 110, 6595–6663.es
dc.source.bibliographicCitationHossain, E., Imtiaj Khan, I., Un-Noor,F, Sikander, S., and Sunny, M.S.H. (2018). Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review, IEEE Access, VOLUME 7, 2019, 13960- 13988.es
dc.source.bibliographicCitationHowson, Cindi, Richardson, James., Sallam, Rita., Kronz., Austin. (2019). Magic Quadrant for Analytics and Business Intelligence Platforms. Gartner, 1-60.es
dc.source.bibliographicCitationGrätzel, Michael. (2001). Photoelectrochemical cells. Nature, 414, 338–344es
dc.source.bibliographicCitationGreen, M. A. (2001). Crystalline silicon photovoltaic cells. Advanced Materials,13, 1019 – 1020.es
dc.source.bibliographicCitationJacome Grajales, N., Escobedo Briones, G., and Guadarrama Villa, E. (2011) Inteligencia de Negocios en el área de seguridad de la CFE. Congreso Internacional sobre Innovación y Desarrollo Tecnológico, 677–685.es
dc.source.bibliographicCitationJe, S-M., | Huh, J‐H. (2019). Estimation of future power consumption level in smart grid: Application of fuzzy logic and genetic algorithm on big data platformes
dc.source.bibliographicCitationKhanna, Manju., Srinath, N. K., and Mendiratta, J. K. (2015). Data Mining in Smart Grids-A Review. International Journal of Advanced Research in Computer Science and Software Engineering. 5, 3, 709-712.es
dc.source.bibliographicCitationKo J-S., Huh J-H, and Kim J-Ch (2020). Overview of Maximum Power Point Tracking Methods for PV System in Micro Grid. Electronics 2020, 9, 816.es
dc.source.bibliographicCitationKomp, R. J. (2001). Practical photovoltaics: electricity from solar cells, 3a. ed., aatec publications: Ann Arbor.es
dc.source.bibliographicCitationMachado, C. T. and Miranda, F. S. (2016). Energía Solar Fotovoltaica: Una Breve Revisão. Rev. Virtual Quim., 2015, 7 (1), 126-143.es
dc.source.bibliographicCitationMendling, Jan., Weber, Ingo., Van Der Aalst, Wil., Vom Brocke, Jan., Cabanillas, Cristina., Daniel, Florian., Zhu, Liming. (2018). Blockchains for Business Process Management – Challenges and Opportunities. ACM Transactions on Management Information Systems. 9, 1, 1-15.es
dc.source.bibliographicCitationMorais, J., Pires, and Cardoso, C. A. Klautau (2009) An overview of data mining techniques applied to power systems. In: J. Ponce, A. Karahoca (eds.) Data Mining and Knowledge Discovery in Real Life Applications. I-Tech Education and Publishinges
dc.source.bibliographicCitationMujeeb, S. , Javaid, N. , Akbar, M, Khalid, R. , Nazeer, O. and Khan,M. (2019). Big Data Analytics for Price and Load Forecasting in Smart Grids. BWCCA, LNDECT 25, pp. 77–87es
dc.source.bibliographicCitationObeidat, Muhammad., North, Max., Richardson, Ronny., Rattanak, Vebol., North, Nakamoto, Satoshi. (2008). Bitcoin: A peer-to-peer electronic cash system. Recuperado de https://bitcoin.org/bitcoin.pdf.es
dc.source.bibliographicCitationNick Szabo (1997). Formalizing and securing relationships on public networks. First Monday. 2 NIST. (2010). Framework and Roadmap for Smart Grid Interoperability Standards N. S. P. 1108., Release 1.0, January.es
dc.source.bibliographicCitationNonaka, I., y Takeuchi, H. (1999). La organización creadora de conocimiento: cómo las compañías japonesas crean la dinámica de la innovación. México: Oxford.es
dc.source.bibliographicCitationOkoro OI (2006). Madueme TC. Solar energy: a necessary investment in a developing economy. International Journal of Sustainable Energy, 25, 1, 23–31.es
dc.source.bibliographicCitationPanwar, N.L., Kaushik, S.C., and Kothari, Surendra (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15, 1513–1524.es
dc.source.bibliographicCitationQuiroga, Darío., Hernández, Beatriz., Torrent, Joan., and Ramírez, John. (2014) La innovación de productos en las empresas, caso empresa América Latina. Revista Cuadernos del CENDES, 87, 63-85.es
dc.source.bibliographicCitationReddy, Paramati Sudharshan., Sinha, Avik. and Dogan, Eyup. (2017). The significance of renewable energy uses for economic output and environmental protection: evidence from the Next 11 developing economies. Environ Sci Pollut Res 24, 15, 13546–13560.es
dc.source.bibliographicCitationSarah. (2015). Business Intelligence Technology, Applications, and Trends. International Management Review, 11, 2, 47-55.es
dc.source.bibliographicCitationSchiermeier, Q., Tollefson, Jeff, Scully, T., Witze, A., Morton, O. (2008). Electricity without carbon. Nature, 454, 816-823.es
dc.source.bibliographicCitationService, R. F. (2005). Is It Time to Shoot for the Sun? Science, 309, 548-551es
dc.source.bibliographicCitationSmestad, Greg P. (2002). optoelectronics of solar cells, 1a. ed., SPIE: Bellingham.es
dc.source.bibliographicCitationStoppato A. (2008). Life cycle assessment of photovoltaic electricity generation. Energy, 33,224-232.es
dc.source.bibliographicCitationTorrent, J. (2004). Innovació tecnològica, creixement econòmic i economia del coneixement. Barcelona: Consell de Treball Econòmic i Social de Catalunya (CTESC), Generalitat de Catalunya.es
dc.source.bibliographicCitationVilaseca, J. y Torrent, J. (2006). TIC, conocimiento y crecimiento económico. Un análisis empírico, agregado e internacional sobre las fuentes de la productividad. Economía Industrial, 360, 41-60.es
dc.source.bibliographicCitationWalport, Mark. (2016). Distributed Ledger Technology: Beyond Blockchain. UK Government Office for Science, Tech. Rep 19.es
dc.source.bibliographicCitationWatson, Hugh, and Wixom, Barb. (2007). The current state of business intelligence, Compute, 40, 9, 96-99.es
dc.source.bibliographicCitationYeoh, William, and Koronios, Andy. (2010). Critical Success Factors for Business Intelligence Systems. Journal of Computer Information Systems, 50, 23-32.es
dc.source.bibliographicCitationZhou, Kaile, Fu, Chao., and Yang, Shanlin. (2016). Big data-driven smart energy management: From big data to big insights, Renewable and Sustainable Energy Reviews, 56, 215–225.es
dc.source.bibliographicCitationZhang, Y. Huang, T. and Bompard, E. F. (2018). Big data analytics in smart grids: a review. Energy Informatics 1:8, 3-24. UR: https://doi.org/10.1186/s42162-018-0007-5es
dc.source.bibliographicCitationZeyar, Aung. (2013). Database Systems for the Smart Grid, Book Smart Grids: Opportunities, Developments, and Trends 151-168. London, England: Springer Verlages
dc.description.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503es
dc.description.orcidhttps://orcid.org/0000-0003-1166-1982es
dc.description.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961es
dc.description.googlescholarhttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eses
Appears in Collections:Ingeniería Mecánica

Files in This Item:
File Description SizeFormat 
Licencia de Uso- Big Data Analytics.pdfLicencia de uso188.01 kBAdobe PDFView/Open Request a copy
Accepted_Publishing_Big Data Analytics in Smart Grids (2).pdfAceptación del artículo41.38 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.