Please use this identifier to cite or link to this item:
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.creatorAcosta-Coll, Melisa-
dc.creatorOspino-Castro, Adalberto-
dc.creatorCarbonell-Navarro, Stalin-
dc.creatorEscobar-Duque, Jaider-
dc.creatorPeña-Gallardo, Rafael-
dc.creatorZamora-Musa, Ronald-
dc.description.abstractPlants microbial fuel cells (PMFC) is novel sytem that generates renewable, clean, and sustainable electricity with minimal environmental impact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different studies show that the highest limitation for energy generation through MFC is the high resistivity of the cathode, and the solution is to replace the metallic electrodes with non-metallic materials to obtain a better performance, however, the application of these materials requires complex interdisciplinary work. This study conducted three experimental tests using metallic electrodes for the extraction of electrons and combined a black earth substrate with different natural materials, types of plants, and water to determine their influence in the increment of the electric power
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Barrancabermejaes
dc.relation.ispartofInternational Journal of Electrical and Computer Engineering (IJECE)es
dc.subjectEnergía limpiaes
dc.subjectPotencial eléctricoes
dc.subjectPila de combustible microbianaes
dc.subjectCélula de combustible microbiana vegetales
dc.subject.otherClean energyes
dc.subject.otherElectric potentiales
dc.subject.otherMicrobial fuel celles
dc.subject.otherPlant microbial fuel celles
dc.titleSubstrate treatment for the increment of electric power potential from plants microbial fuel
dc.typeArtículos Científicoses
dc.rights.licenseAtribución – Compartir iguales
dc.publisher.programIngeniería Industriales
dc.identifier.bibliographicCitationAcosta-Coll, M., Ospino-Castro, A., Carbonell-Navarro, S., Escobar-Duque, J., Peña-Gallardo, R., & Zamora-Musa, R. (2021). Substrate treatment for the increment of electric power potential from plants microbial fuel cells. International Journal Of Electrical And Computer Engineering (IJECE), 11(3), 1933. doi: 10.11591/ijece.v11i3.pp1933-1941es
dc.publisher.editorInstitute of Advanced Engineering and Science (IAES)es
dc.source.bibliographicCitationM. Acosta-Coll et al., “Real-time early warning system design forpluvial flash floods-A review,”Sensors, vol. 18, p. 2255, Jul.2018es
dc.source.bibliographicCitationJ. Cabello et al., “Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba,”Journal of cleaner production,vol. 108, pp. 873–882,
dc.source.bibliographicCitationS. Oncel, “Green energy engineering: Opening a green way for the future,”Journal of cleaner production,vol. 142, pp. 3095–3100,
dc.source.bibliographicCitationC. Robles-Algarín et al.,“Procedimiento para la Selección de Criterios en la Planificación Energética de Zonas Rurales Colombianas,”Información tecnológica,vol. 29, pp. 71–80, Jun.2018es
dc.source.bibliographicCitationM. Rahimnejadet al.,“Microbial fuel cell as new technology for bioelectricity generation: A review,”Alexandria Engineering Journal,vol. 54, pp. 745–756,
dc.source.bibliographicCitationA. Franks and K. Nevin, “Microbial fuel cells, a current review,”Energies,vol. 3, pp. 899–919, Apr.2010es
dc.source.bibliographicCitationC. Santoroet al.,“Microbial fuel cells: from fundamentals to applications. A review,”Journal of power sources,vol. 356, pp.225–244, Jul.2017es
dc.source.bibliographicCitationS. Flimbanet al.,“Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability,”Energies, vol. 12, p. 3390, Sep.2019es
dc.source.bibliographicCitationA. Nandyet al.,“Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge,”Energies, vol.12, p. 1034, Mar.2019es
dc.source.bibliographicCitationR. Regmiet al.,“A decade of plant-assisted microbial fuel cells: looking back and moving forward,”Biofuels, vol.9, pp. 605–612,
dc.source.bibliographicCitationK. Aiyer, “How does electron transferoccur in microbial fuel cells?”World Journal of Microbiology and Biotechnology,vol.36, p.19, Jan.2020es
dc.source.bibliographicCitationM. Rossiet al., “Let the microbes power your sensing display,”2017 IEEE Sensors, pp. 1-3,
dc.source.bibliographicCitationM. Vanitha et al., “Microbial fuel cell characterisation and evaluation of Lysinibacillus macroidesMFC02 electrigenic capability,”World Journal of Microbiology and Biotechnology, vol. 33, p.91, Apr.2017es
dc.source.bibliographicCitationB. Loganet al.,“Microbial fuel cells: methodology and technology,”Environmental science & technology,vol. 40, pp. 5181-5192, Jul.2006es
dc.source.bibliographicCitationG. Chenet al.,“Application of biocathode in microbial fuel cells: cell performance and microbial community,”Applied microbiology and biotechnology,vol. 79, pp. 379–388,
dc.source.bibliographicCitationF. Offeiet al.,“A viable electrode material for use in microbial fuel cells for tropical regions,”Energies, vol.9, p. 35, Jan.2016es
dc.source.bibliographicCitationQ. Deng et al.,“Power generation using an activated carbon fiber felt cathode inan upflow microbial fuel cell,”Journal of Power Sources, vol. 195, pp. 1130–1135,
dc.source.bibliographicCitationA. Ter Heijneet al.,“A bipolar membrane combined with ferric iron reduction as an efficient cathodesystem in microbial fuel cells,” Environmental science & technology,vol. 40, pp. 5200–5205,Jul.2006es
dc.source.bibliographicCitationK. Vezina, “Plant Lamps” Turn Dirt and Vegetation into a Power Source,”MIT Technology Review[Online]. Available:
dc.source.bibliographicCitationP. Sarma and K. Mohanty, “Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode,”Journal of bioscience and bioengineering,vol. 126, pp. 404–410, Sep.2018es
dc.source.bibliographicCitationB. Liuet al., “Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations,”Chemosphere, vol. 209, pp. 739–747,
dc.source.bibliographicCitationY. Hubenova and M. Mitov, “Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell,”Bioelectrochemistry,vol. 87, pp. 185–191, Oct.2012es
dc.source.bibliographicCitationM. Helder et al., “Electricity production with living plants on a green roof: environmental performance of the plant‐microbial fuel cell,”Biofuels, Bioproducts and Biorefining, vol.7, pp. 52–64, Jan.2013es
dc.source.bibliographicCitationR. Moliner, “Del carbón activo al grafeno: Evolución de los materiales de carbon,”Boletín del Grupo Español del Carbón, vol.41, pp. 2–5, Sep.2016es
dc.source.bibliographicCitationM. Richard, “El carbón activo ya se fabrica con una estructura diseñada a medida,”MIT Technology Review [Online]. Available:
dc.source.bibliographicCitationP. Omo-Okoroet al., “A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies,”Environmental Technology & Innovation, vol. 9, pp. 100–114, Feb.2018es
dc.source.bibliographicCitationK. Palansooriya et al., “Impacts of biochar application on upland agriculture: A review,”Journal of environmental management,vol. 234, pp. 52–64, Mar.2019es
dc.source.bibliographicCitationJ. Kamcev et al., “Salt concentration dependence of ionic conductivity in ion exchange membranes,”Journal of Membrane Science,vol. 547, pp. 123–133,
Appears in Collections:Ingeniería Industrial

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.