Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/32872
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.coverage.temporal322es
dc.creatorDelgado, Daniel Ricardo-
dc.creatorBahamón-Hernandez, Otto-
dc.creatorEnrique Cerquera, Nestor-
dc.creatorOrtiz, Claudia Patricia-
dc.creatorMartínez, Fleming-
dc.creatorRahimpour, Elaheh-
dc.creatorJouyban, Abolghasem-
dc.creatorAcree Jr, William E.-
dc.date.accessioned2021-01-27T15:48:29Z-
dc.date.available2021-01-27T15:48:29Z-
dc.date.issued2121-01-15-
dc.identifier.issn01677322es
dc.identifier.urihttps://doi.org/10.1016/j.molliq.2020.114979es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/32872-
dc.descriptionLa solubilidad en equilibrio de la sulfadiazina (SD, 3) en mezclas de {acetonitrilo (MeCN, 1) + metanol (MeOH, 2)} a nueve temperaturas de 278,15 K a 318,15 K se ha determinado y correlacionado por medio de una correlación termodinámica bien conocida modelos. Se aplicaron cinco modelos, incluidos van't Hoff, la superficie de respuesta de mezcla (MRS), Jouyban-Acree, Jouyban-Acree-van't Hoff y los modelos de Wilson modificados al modelado matemático de datos de solubilidad. La precisión de cada modelo se investiga mediante las desviaciones relativas medias ( % MRD ) de la solubilidad retrocalculada. Todos los modelos usados ​​muestran una MRD bajaValores de% (<8,0%) para los datos calculados que indican una buena correlación de los datos de solubilidad de sulfadiazina con los modelos matemáticos dados. Utilizando las ecuaciones de van't Hoff y Gibbs, se calcularon las respectivas cantidades termodinámicas aparentes de los procesos de disolución y mezcla, a saber, energía, entalpía y entropía de Gibbs. Se observó una relación de entalpía-entropía no lineal para SD en el gráfico de entalpía vs.Energía de Gibbs que exhibe pendiente negativa en la región de composición 0.00 < w 1 <0.05 indica un mecanismo de conducción de entropía para este proceso de transferencia, y pendientes variantes pero principalmente positivas el intervalo de composición 0,05 < w 1 <0,30, lo que indica el mecanismo impulsor de la entalpía para estos procesos de transferencia. Desde w1 = 0,30 para MeCN puro se observa una pendiente cercana a cero. Además, se analizó la solvatación preferencial de SD por MeCN o MeOH usando las integrales inversas de Kirkwood-Buff. Por tanto, SD se solvata preferentemente mediante moléculas de MeOH en mezclas ricas en MeOH.es
dc.description.abstractThe equilibrium solubility of sulfadiazine (SD, 3) in {acetonitrile (MeCN, 1) + methanol (MeOH, 2)} mixtures at nine temperatures from 278.15 K to 318.15 K has been determined and correlated by means of some well-known thermodynamic correlation models. Five models including van't Hoff, the mixture response surface (MRS), Jouyban-Acree, Jouyban-Acree-van't Hoff and the modified Wilson models were applied to mathematical solubility data modelling. The accuracy of each model is investigated by the mean relative deviations (MRD%) of the back-calculated solubility. All used models show a low MRD% values (< 8.0%) for the calculated data indicating a good correlation of sulfadiazine solubility data with the given mathematical models. By using the van't Hoff and Gibbs equations the respective apparent thermodynamic quantities of the dissolution and mixing processes, namely Gibbs energy, enthalpy, and entropy, were calculated. Non-linear enthalpy–entropy relationship was observed for SD in the plot of enthalpy vs. Gibbs energy exhibiting negative slope in the composition region 0.00 < w1 < 0.05 indicating entropy-driving mechanism for this transfer process, and variant but mainly positive slopes in the composition interval 0.05 < w1 < 0.30, indicating enthalpy-driving mechanism for these transfer processes. From w1 = 0.30 to neat MeCN a slope near zero is observed. Furthermore, the preferential solvation of SD by MeCN or MeOH was analysed by using the inverse Kirkwood-Buff integrals. Thus, SD is preferentially solvated by MeOH molecules in MeOH-rich mixtures.es
dc.format.extent10es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neivaes
dc.relation.ispartofJournal of Molecular Liquidses
dc.relation.isversionofhttps://bbibliograficas.ucc.edu.co:2152/science/article/pii/S0167732220372214es
dc.subjectSulfadiazinaes
dc.subject{acetonitrilo (1) + metanol (2)} mezclases
dc.subjectCosolvenciaes
dc.subjectTermodinámica de disoluciónes
dc.subjectModelo Jouyban-Acreees
dc.subjectSolvatación preferenciales
dc.subjectIKBIes
dc.subject.otherSulfadiazinees
dc.subject.other{acetonitrile (1) + methanol (2)} mixtureses
dc.subject.otherCosolvencyes
dc.subject.otherDissolution thermodynamicses
dc.subject.otherJouyban-Acree modeles
dc.subject.otherPreferential solvationes
dc.subject.otherIKBIes
dc.titleSolubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvationes
dc.typeArtículoes
dc.rights.licenseAtribución – Sin Derivares
dc.publisher.departmentNeivaes
dc.publisher.programIngeniería Industriales
dc.description.tableOfContentsHighlights. -- Abstract. -- Keywords. -- 1. Introduction. -- 2. Experimental section. -- 3. Results and discussion. -- 4. Conclusions. -- Declaration of Competing Interest. -- Acknowledgments. -- Appendix A. Supplementary data. -- References.es
dc.creator.maildanielr.delgado@campusucc.edu.coes
dc.identifier.bibliographicCitationDelgado et al. Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation, Journal of Molecular Liquids Volume 322, 15 January 2021, 114979es
dc.rights.accessRightsembargoedAccesses
dc.publisher.editorElsevier B.V.es
dc.source.bibliographicCitationY. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67es
dc.source.bibliographicCitationY. Marcus Preferential solvation of drugs in binary solvent mixtures Pharm. Anal. Acta, 8 (2017), p. 1000537es
dc.source.bibliographicCitationA. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press, Boca Raton, FL (2010)es
dc.source.bibliographicCitationA. Avdeef Absorption and Drug Development, Solubility, Permeability and Charge State Wiley-Interscience, Hoboken (NJ) (2003)es
dc.source.bibliographicCitationY. Marcus Solvent Mixtures: Properties and Selective Solvation Marcel Dekker, Inc., New York (NY) (2002)es
dc.source.bibliographicCitationS. Budavari, M.J. O’Neil, A. Smith, P.E. Heckelman, J.R. Obenchain Jr., J.A.R. Gallipeau, M.A. D’Arecea The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals (13th ed.), Merck & Co., Inc., Whitehouse Station, NJ (2001)es
dc.source.bibliographicCitationF. Martínez, A. Gómez Thermodynamics of partitioning of some sulfonamides in 1-octanol/buffer and liposome systems J. Phys. Org. Chem., 15 (2002), pp. 874-880es
dc.source.bibliographicCitationS. Gelone, J.A. O’Donell Anti-infectives A.R. Gennaro (Ed.), Remington: The Science and Practice of Pharmacy (21st ed.), Lippincott Williams & Wilkins, Philadelphia (PA) (2005)es
dc.source.bibliographicCitationS.C. Sweetman (Ed.), Martindale: The Complete Drug Reference (36th ed.), Pharmaceutical Press, London (2009)es
dc.source.bibliographicCitationF. Martínez, A. Gómez Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents J. Solut. Chem., 30 (2001), pp. 909-923es
dc.source.bibliographicCitationA. Romdhani, F. Martínez, O.A. Almanza, M.A. Peña, A. Jouyban, W.E. Acree Jr. Solubility of sulfacetamide in (ethanol + water) mixtures: Measurement, correlation, thermodynamics, preferential solvation and volumetric contribution at saturation J. Mol. Liq., 290 (2019), p. 111219es
dc.source.bibliographicCitationY. Marcus The Properties of Solvents John Wiley & Sons, Chichester (UK) (1998)es
dc.source.bibliographicCitationF. Tewes, F. Boury, J.P. Benoit Biodegradable microspheres: Advances in production technology S. Benita (Ed.), Microencapsulation: Methods and Industrial Applications (2nd ed.), Taylor & Francis, New York (NY) (2006), pp. 1-53es
dc.source.bibliographicCitationL.R. Greene, A.C. Blackburn, J.M. Miller Rapid, small-scale determination of organic solvent solubility using a thermogravimetric analyzer J. Pharm. Biomed. Anal., 39 (2005), pp. 344-347es
dc.source.bibliographicCitationY. Kazakevich, R. Lobrutto HPLC for Pharmaceutical Scientists John Wiley & Sons, Inc., Hoboken (NJ) (2007)es
dc.source.bibliographicCitationY. Marcus The structure of and interactions in binary acetonitrile + water mixtures J. Phys. Org. Chem., 25 (2012), pp. 1072-1085es
dc.source.bibliographicCitationI. Cibulka, D. Nguyen, R. Holub Excess molar volumes of (an alkanol + acetonitrile) at 298.15 and 308.15 K J. Chem. Thermodyn., 16 (1984), pp. 159-164es
dc.source.bibliographicCitationI.R. Grguric, A.Z. Tasic, B.D. Djordjevic, M.L.J. Kijevcanin, S.P. Serbanovic Excess molar volume of the acetonitrile + alcohol systems at 298.15 K. Part I: Density measurements for acetonitrile + methanol, + ethanol systems J. Serb. Chem. Soc, 67 (2002), pp. 581-586es
dc.source.bibliographicCitationI. Nagata, K. Katoh, J. Koyaru Liquid-liquid equilibria for ternary systems containing acetonitrile Thermochim. Acta, 47 (1981), pp. 225-233es
dc.source.bibliographicCitationI. Nagata, K. Tamura Excess enthalpies of binary and ternary mixtures of acetonitrile with methanol, ethanol and benzene Fluid Phase Equilib., 24 (1985), pp. 289-306es
dc.source.bibliographicCitationA.P. Jogdand, P.L. Kadam Excess properties of acetonitrile + methanol binary mixtures at microwave frequency IOSR Journal of Engineering (IOSRJEN), 4 (3) (2014), pp. 47-55es
dc.source.bibliographicCitationA.K. Sum, S.I. Sandler, R. Bukowski, K. Szalewicz Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. II. The mixture J. Chem. Phys., 116 (2002), pp. 7637-7644es
dc.source.bibliographicCitationY. Marcus Preferential solvation in mixed solvents. 15. Mixtures of acetonitrile with organic solvents J. Chem. Thermodyn., 135 (2019), pp. 55-59es
dc.source.bibliographicCitationQ. Zhang, Y. Yang, C. Cao, L. Cheng, Y. Shi, W. Yang, Y. Hua Thermodynamic models for determination of the solubility of dibenzothiophene in (methanol + acetonitrile) binary solvent mixtures J. Chem. Thermodyn., 80 (2015), pp. 7-12es
dc.source.bibliographicCitationP.H. Elworthy, E.C. Worthington The solubility of sulphadiazine in water–dimethylformamide mixtures J. Pharm. Pharmacol., 20 (1968), pp. 830-835es
dc.source.bibliographicCitationP. Bustamante, B. Escalera, A. Martin, E. Selles A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures J. Pharm. Pharmacol., 45 (1993), pp. 253-257es
dc.source.bibliographicCitationD.R. Delgado, F. Martinez Solution thermodynamics of sulfadiazine in ethanol + water mixtures J. Mol. Liq., 187 (2013), pp. 99-105es
dc.source.bibliographicCitationD.R. Delgado, M.Á. Peña, F. Martínez Preferential solvation of some sulfonamides in 1,4–dioxane + water co–solvent mixtures at 298.15 K according to the inverse Kirkwood–Buff integrals method Rev. Acad. Colomb. Cienc., 38 (2014), pp. 104-114es
dc.source.bibliographicCitationD.R. Delgado, F. Martínez Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method J. Mol. Liq., 193 (2014), pp. 152-159es
dc.source.bibliographicCitationD.R. Delgado, F. Martínez Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures Fluid Phase Equilib., 379 (2014), pp. 128-138es
dc.source.bibliographicCitationD.R. Delgado, F. Martínez Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures J. Solut. Chem., 43 (2014), pp. 836-852es
dc.source.bibliographicCitationD.R. Delgado, F. Martínez Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures Phys. Chem. Liq., 53 (2015), pp. 293-306es
dc.source.bibliographicCitationD.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.Á. Peña, F. Martínez Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures Fluid Phase Equilib., 397 (2015), pp. 26-36es
dc.source.bibliographicCitationM.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K J. Mol. Liq., 204 (2015), pp. 132-136es
dc.source.bibliographicCitationD.M. Jiménez, Z.J. Cárdenas, F. Martínez Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures J. Mol. Liq., 216 (2016), pp. 239-245es
dc.source.bibliographicCitationD.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Jr. Solubility of sulphadiazine in (acetonitrile + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation Phys. Chem. Liq., 58 (2020), pp. 381-396es
dc.source.bibliographicCitationJ.T. Rubino Cosolvents and cosolvency J. Swarbrick, J.C. Boylan (Eds.), Encyclopedia of Pharmaceutical Technology, vol. 3, Marcel Dekker, Inc., New York (1988)es
dc.source.bibliographicCitationS.H. Yalkowsky Solubility and Solubilization in Aqueous Media, American Chemical Society and Oxford University Press, New York (1999)es
dc.source.bibliographicCitationA. Martin, P. Bustamante, A.H.C. Chun Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.), Lea & Febiger, Philadelphia (1993)es
dc.source.bibliographicCitationA.F.M. Barton Handbook of Solubility Parameters and Other Cohesion Parameters (2nd ed.), CRC Press, New York (1991)es
dc.source.bibliographicCitationK.A. Connors Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy Wiley–Interscience, Hoboken, NJ (2002)es
dc.source.bibliographicCitationR.F. Fedors A method for estimating both the solubility parameters and molar volumes of liquids Polym. Eng. Sci., 14 (1974), pp. 147-154es
dc.source.bibliographicCitationA. Kristl, G. Vesnaver Thermodynamic investigation of the effect of octanol–water mutual miscibility on the partitioning and solubility of some guanine derivatives J. Chem. Soc. Faraday Trans., 91 (1995), pp. 995-998es
dc.source.bibliographicCitationA. Jouyban, W.E. Acree Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures J. Mol. Liq., 256 (2018), pp. 541-547es
dc.source.bibliographicCitationA. Jouyban Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures J. Pharm. Pharmaceut. Sci., 11 (2008), pp. 32-58es
dc.source.bibliographicCitationA. Jouyban Review of the cosolvency models for predicting drug solubility in solvent mixtures: An update J. Pharm. Pharmaceut. Sci., 22 (2019), pp. 466-485es
dc.source.bibliographicCitationR.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341es
dc.source.bibliographicCitationR.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effects J. Phys. Chem., 80 (1976), pp. 2341-2351es
dc.source.bibliographicCitationF. Shakeel, M. Iqbal, E. Ezzeldin, N. Haq Thermodynamics of solubility of ibrutinib in ethanol + water cosolvent mixtures at different temperatures J. Mol. Liq., 209 (2015), pp. 461-464es
dc.source.bibliographicCitationL. Wang, H. Zhang, Z. Shen, L. Xu, G. Liu Measurement and correlation of solubility of methyleneaminoacetonitrile in pure and binary solvents and thermodynamic properties of solution J. Chem. Thermodyn., 134 (2019), pp. 146-156es
dc.source.bibliographicCitationS. Alshehri, F. Shakeel Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures J. Mol. Liq., 307 (2020), p. 112970es
dc.source.bibliographicCitationG.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420es
dc.source.bibliographicCitationD.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures J. Chem. Thermodyn., 97 (2016), pp. 264-276es
dc.source.bibliographicCitationP. Bustamante, S. Romero, A. Reillo Thermodynamics of paracetamol in amphiprotic and amphiprotic—aprotic solvent mixtures Pharm. Pharmacol. Commun., 1 (1995), pp. 505-507es
dc.source.bibliographicCitationC. Bustamante, P. Bustamante Nonlinear enthalpy–entropy compensation for the solubility of phenacetin in dioxane–water solvent mixtures J. Pharm. Sci., 85 (1996), pp. 1109-1111es
dc.source.bibliographicCitationP. Bustamante, S. Romero, A. Peña, B. Escalera, A. Reillo Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water J. Pharm. Sci., 87 (1998), pp. 1590-1596es
dc.source.bibliographicCitationY. Marcus Preferential solvation in mixed solvents P.E. Smith, E. Matteoli, J.P. O’Connell (Eds.), Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics, CRC Press, Taylor & Francis Group, Boca Raton (FL) (2013)es
dc.source.bibliographicCitationW. Li, S. Qi, N. Wang, Z. Fei, A. Farajtabar, H. Zhao Solute-solvent and solvent-solvent interactions and preferential solvation of limonin in aqueous co-solvent mixtures of methanol and acetone J. Mol. Liq., 263 (2018), pp. 357-365es
dc.source.bibliographicCitationM. Zheng, A. Farajtabar, H. Zhao Solute-solvent and solvent-solvent interactions and preferential solvation of hesperidin in aqueous cosolvent mixtures of ethanol, isopropanol, propylene glycol and n-propanol J. Mol. Liq., 264 (2018), pp. 285-291es
dc.source.bibliographicCitationA. Ben-Naim Preferential solvation in two- and in three-component systems Pure Appl. Chem., 62 (1990), pp. 25-34es
dc.source.bibliographicCitationY. Marcus Solubility and solvation in mixed solvent systems Pure Appl. Chem., 62 (1990), pp. 2069-2076es
dc.source.bibliographicCitationB.G. Alberding, B.J. Lear Concentration-dependent dynamics of hydrogen bonding between acetonitrile and methanol as determined by 1D vibrational spectroscopy J. Phys. Chem. A, 118 (2014), pp. 4363-4371es
dc.date.embargoEnd2022-12-31-
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116es
dc.description.orcidhttps://orcid.org/0000-0002-4835-9739es
dc.description.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151es
dc.description.googlescholarhttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=eses
Appears in Collections:Ingeniería Industrial

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.