Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/32799
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFigueroa Martinez, Cristhian Nicolas-
dc.contributor.advisorMera Paz, Julián Andrés-
dc.coverage.spatialPopayánes
dc.creatorCampo Martinez, Jose Edgar-
dc.creatorEcheverry Camayo, Juan Camilo-
dc.date.accessioned2021-01-23T08:10:56Z-
dc.date.available2021-01-23T08:10:56Z-
dc.date.issued2021-01-21-
dc.identifier.urihttp://hdl.handle.net/20.500.12494/32799-
dc.descriptionEn el documento se explicara el estudio de tres contextos diferentes sobre sistemas de recomendación para la agricultura, a nivel mundial, latinoamericano y local en donde se entregan un conjunto de buenas prácticas para el desarrollo de sistemas de recomendación para la agricultura colombiana, por el cual a través de una revisión sistemática de literatura se logra identificar que el tipo de sistema de recomendación adecuado para el contexto colombiano es el tipo hibrido, ya que este por su gran robustez y combinación de múltiples sistemas de recomendación permite el estudio de diferentes características de los suelos, precipitación, clima, entre otras que permiten realizar recomendaciones acertadas, entregando datos claves para la mejora en la producción y tratamiento de los cultivos por los agricultores.es
dc.description.abstractThe document will explain the study of three different contexts on recommendation systems for agriculture, at the global, Latin American and local levels, where a set of good practices for the development of recommendation systems for Colombian agriculture is delivered, by which Through a systematic literature review, it is possible to identify that the type of recommendation system suitable for the Colombian context is the hybrid type, since this, due to its great robustness and combination of multiple recommendation systems, allows the study of different characteristics of the soils, precipitation, climate, among others that allow making accurate recommendations, providing key data for improving the production and treatment of crops by farmers.es
dc.format.extent81 p.es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Popayánes
dc.subjectSistemas de recomendaciónes
dc.subjectRevisión sistemáticaes
dc.subjectAgriculturaes
dc.subjectAgricultores
dc.subject.otherRecommendation systemses
dc.subject.otherSystematic reviewes
dc.subject.otherAgriculturees
dc.subject.otherFarmeres
dc.titleEstudio de sistemas de recomendación para la agricultura y su aplicación en Colombiaes
dc.typeTrabajos de grado - Pregradoes
dc.rights.licenseAtribución – No comercial – Compartir iguales
dc.publisher.departmentPopayánes
dc.publisher.programIngeniería de Sistemases
dc.description.tableOfContentsResumen. -- Abstract. -- Palabras clave. -- key words. -- Introducción. -- Planteamiento del problema. -- Objetivos. -- Objetivo general. -- Objetivo específico. -- Justificación. -- Marco de referencia. -- Metodología. -- Cronograma. -- Recursos, presupuestos y fuentes de financiación. -- Resultados y discusiones. -- Conclusiones. -- Recomendaciones. -- Apéndice. -- Bibliografía.es
dc.creator.mailjose.campoma@campusucc.edu.coes
dc.creator.mailjuan.echeverryca@campusucc.edu.coes
dc.identifier.bibliographicCitationCampo Martinez J. E. y Echeverry Camayo J. C. (2020). Estudio de sistemas de recomendación para la agricultura y su aplicación en Colombia [Tesis de pregrado, Universidad Cooperativa de Colombia].Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/32799es
dc.rights.accessRightsopenAccesses
dc.source.bibliographicCitationCardona, V. (27 de 02 de 2015). eltiempo.com. Obtenido de eltiempo.com: eltiempo.com/archivo/documento/CMS-15313755es
dc.source.bibliographicCitationCenicaña. (23 de 09 de 2019). Centro de investigacio de la caña de azucar . Obtenido de https://www.cenicana.orges
dc.source.bibliographicCitationColciencias. (11 de 09 de 2016). Colciencias. Obtenido de https://www.colciencias.gov.co/sala_de_prensa/colombia-el-segundo-pais-mas-biodiverso-del-mundoes
dc.source.bibliographicCitationColciencias. (09 de 11 de 2016). www.colciencias.gov.co. Obtenido de www.colciencias.gov.co: https://www.colciencias.gov.co/sala_de_prensa/colombia-el-segundo-pais-mas-biodiverso-del-mundoes
dc.source.bibliographicCitationDane. (12 de agosto de 2015). Informe de contexto del 3er Censo. Obtenido de https://www.dane.gov.co/files/CensoAgropecuario/avanceCNA/CNA_Contexto_2015.pdfes
dc.source.bibliographicCitationKanpo. (2016). Kanpo. Obtenido de kanpo: http://www.kanpo.com.co/ MinAgricultura, A. (26 de 12 de 2018). Agronet. Obtenido de https://www.agronet.gov.co/Paginas/inicio.aspxes
dc.source.bibliographicCitationPlagapp. (2017). plagapp. Obtenido de https://plagapp.cl/home/es
dc.source.bibliographicCitationRural, M. d. (s.f.). https://www.minagricultura.gov.co. Obtenido de https://www.minagricultura.gov.co: https://www.minagricultura.gov.co/Normatividad/Paginas/Leyes.aspxes
dc.source.bibliographicCitationS.A.S, E. L. (27 de enero de 2018). Editorial La República . Obtenido de https://www.larepublica.co/internet-economy/conozca-las-aplicaciones-que-estan-ayudando-al-desarrollo-del-sector-agropecuario-2593192es
dc.source.bibliographicCitationAlex, S. A., & Kanavalli, A. (2019a). Assessment framework modeling using location aware computing for fertilizer management and crop recommendation. International Journal of Recent Technology and Engineering, 8(3), 1315–1319. https://doi.org/10.35940/ijrte.B3245.098319es
dc.source.bibliographicCitationAlex, S. A., & Kanavalli, A. (2019b). Assessment framework modeling using location aware computing for fertilizer management and crop recommendation. International Journal of Recent Technology and Engineering, 8(3), 1315–1319. https://doi.org/10.35940/ijrte.B3245.098319es
dc.source.bibliographicCitationAntle, J. M., Jones, J. W., & Rosenzweig, C. E. (2017). Next generation agricultural system data, models and knowledge products: Introduction. Agricultural Systems, 155, 186–190. https://doi.org/10.1016/j.agsy.2016.09.003es
dc.source.bibliographicCitationAvey, D., Givens, W. A., Heimbaugh, R. L., Mitchell, S. B., & Wei, J. (2014). Targeted agricultural recommendation system. Google Patents.es
dc.source.bibliographicCitationCenicaña. (2018). Agricultura de Precisión. In Cenicaña. http://www.cenicana.org/web/programas-de-investigacion/agronomia/geomatica/agricultura-de-precisiones
dc.source.bibliographicCitationChen, Q., Zhang, H., Li, X., Christie, P., Horlacher, D., & Liebig, H.-P. (2005). Use of a modified N-expert system for vegetable production in the Beijing region. Journal of Plant Nutrition, 28(3), 475–487. https://doi.org/10.1081/PLN-200049184es
dc.source.bibliographicCitationClermont-Dauphin, C., Meynard, J. M., & Cabidoche, Y. M. (2003). Devising fertiliser recommendations for diverse cropping systems in a region: The case of low-input bean/maize intercropping in a tropical highland of Haïti. Agronomie, 23(7), 673–681. https://doi.org/10.1051/agro:2003046es
dc.source.bibliographicCitationCsatho, P., Arendas, T., Fodor, N., Nemeth, T., Csathó, P., Árendás, T., Fodor, N., & Németh, T. (2009). Evaluation of different fertilizer recommendation systems on various soils and crops in Hungary. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 40(11–12), 1689–1711. https://doi.org/10.1080/00103620902895797es
dc.source.bibliographicCitationDe Oliveira, F H T, Novais, R. F., Alvarez, V. H., & Cantarutti, R. B. (2005). Development of a fertilization recommendation system for banana plantations. Revista Brasileira de Ciencia Do Solo, 29(1), 131–143. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748966296&partnerID=40&md5=9190db3abee40ede65544f2073f511fees
dc.source.bibliographicCitationDe Oliveira, Fábio Henrique Tavares, Novais, R. F., Alvarez, V. H., & Cantarutti, R. B. (2005). Development of a fertilization recommendation system for banana plantations. Revista Brasileira de Ciencia Do Solo, 29(1), 131–143. 60 https://doi.org/10.1590/s0100-06832005000100015es
dc.source.bibliographicCitationDezordi, L. R., de Aquino, L. A., Novais, R. F., de Aquino, P. M., & dos Santos, L. P. (2015). NUTRIENT RECOMMENDATION MODEL FOR CARROT CROP - FERTICALC CARROT. REVISTA BRASILEIRA DE CIENCIA DO SOLO, 39(6), 1714–1722. https://doi.org/10.1590/01000683rbcs20150065es
dc.source.bibliographicCitationDoshi, Z., Nadkarni, S., Agrawal, R., & Shah, N. (2018). AgroConsultant: Intelligent Crop Recommendation System Using Machine Learning Algorithms. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 1–6. https://doi.org/10.1109/ICCUBEA.2018.8697349es
dc.source.bibliographicCitationDubos, B., Baron, V., Bonneau, X., Dassou, O., Flori, A., Impens, R., Ollivier, J., & Pardon, L. (2019). Precision agriculture in oil palm plantations: Diagnostic tools for sustainable N and K nutrient supply. OCL - Oilseeds and Fats, Crops and Lipids, 26. https://doi.org/10.1051/ocl/2019001es
dc.source.bibliographicCitationDupré, R. L. C., Khiari, L., Gallichand, J., & Joseph, C. A. (2019). Multi-factor diagnostic and recommendation system for boron in neutral and acidic soils. Agronomy, 9(8). https://doi.org/10.3390/agronomy9080410es
dc.source.bibliographicCitationE+E Elektronik Ges.m.b.H. (n.d.). Optimisation of FRUIT TRANSPORT. 43(0), 44043101. http://sensovant.com/productos-aplicaciones/agricultura/instrumentos-tecnologicos-agricultura.htmles
dc.source.bibliographicCitationEl futuro de la Tendencias alimentación y la agricultura. (2017).es
dc.source.bibliographicCitationElektronik. (n.d.). Climate control for fruit storage. 43(0), 44043101. http://sensovant.com/productos-aplicaciones/agricultura/instrumentos-tecnologicos-agricultura.htmles
dc.source.bibliographicCitationEstado, E. L., De, M., Agricultura, L. A., & Alimentación, L. A. (2016). Nota de prensa. In Revista Iberoamericana de Fertilidad y Reproduccion Humana (Vol. 33, Issue 1, p. 49). www.fao.org/publications/es/es
dc.source.bibliographicCitationFAO | Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2018). http://www.fao.org/colombia/fao-en-colombia/colombia-en-una-mirada/es/es
dc.source.bibliographicCitationGeypens, M., & Vandendriessche, H. (1996). Advisory systems for nitrogen fertilizer recommendations. Plant and Soil, 181(1), 31–38. https://doi.org/10.1007/BF00011289es
dc.source.bibliographicCitationGott, R M, Aquino, L. A., Clemente, J. M., Santos, L. P. D. D., Carvalho, A. M. X., & Xavier, F. O. (2017). Foliar Diagnosis Indexes for Corn by the Methods Diagnosis and Recommendation Integrated System (DRIS) and Nutritional Composition (CND). Communications in Soil Science and Plant Analysis, 48(1), 11–19. https://doi.org/10.1080/00103624.2016.1253714es
dc.source.bibliographicCitationGott, Roney Mendes, Aquino, L. A., Clemente, J. M., Santos, L. P. D. Dos, Carvalho, A. M. X., & Xavier, F. O. (2017). Foliar Diagnosis Indexes for Corn by the Methods Diagnosis and Recommendation Integrated System (DRIS) and Nutritional Composition (CND). Communications in Soil Science and Plant Analysis, 48(1), 11–19. https://doi.org/10.1080/00103624.2016.1253714es
dc.source.bibliographicCitationHadfi, I. H., & Yusoh, Z. I. M. (2018). Banana ripeness detection and servings recommendation system using artificial intelligence techniques. Journal of 62 Telecommunication, Electronic and Computer Engineering, 10(2–8), 83–87. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052017060&partnerID=40&md5=c20b12f9f13e3b1738dfbcf0e8af4069es
dc.source.bibliographicCitationHenrique, L. (2013). Desenvolvimento e validação de um sistema de recomendação de informações tecnológicas sobre. 387–395.es
dc.source.bibliographicCitationIvanyi, I., & Izsaki, Z. (2009). Effect of Nitrogen, Phosphorus, and Potassium Fertilization on Nutrional Status of Fiber Hemp. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 40(1–6), 974–986. https://doi.org/10.1080/00103620802693466es
dc.source.bibliographicCitationIványi, I., & Izsáki, Z. (2009). Effect of nitrogen, phosphorus, and potassium fertilization on nutrional status of fiber hemp. Communications in Soil Science and Plant Analysis, 40(1–6), 974–986. https://doi.org/10.1080/00103620802693466es
dc.source.bibliographicCitationJannach, D., & Dortmund, T. U. (2014). Recommender Systems An introduction Recommender Systems. https://doi.org/10.1109/QELS.2001.961932es
dc.source.bibliographicCitationJanssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems, 155, 200–212. https://doi.org/10.1016/j.agsy.2016.09.017es
dc.source.bibliographicCitationJat, R. A., Wani, S. P., Sahrawat, K. L., Singh, P., Dhaka, S. R., & Dhaka, B. L. (2012). Recent approaches in nitrogen management for sustainable agricultural production and eco-safety. Archives of Agronomy and Soil Science, 58(9), 1033–1060. https://doi.org/10.1080/03650340.2011.557368es
dc.source.bibliographicCitationJearanaiwongkul, W., Anutariya, C., & Andres, F. (2019). A formal model for managing multiple observation data in agriculture. International Journal of Intelligent Information Technologies, 15(3), 79–100. https://doi.org/10.4018/IJIIT.2019070105es
dc.source.bibliographicCitationJu, X., & Christie, P. (2011). Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Research, 124(3), 450–458. https://doi.org/10.1016/j.fcr.2011.08.002es
dc.source.bibliographicCitationKay, B. D., Mahboubi, A. A., Beauchamp, E. G., & Dharmakeerthi, R. S. (2006). Integrating soil and weather data to describe variability in plant available nitrogen. Soil Science Society of America Journal, 70(4), 1210–1221. https://doi.org/10.2136/sssaj2005.0039es
dc.source.bibliographicCitationKhedr, A. E., Kadry, M., & Walid, G. (2015). Proposed Framework for Implementing Data Mining Techniques to Enhance Decisions in Agriculture Sector Applied Case on Food Security Information Center Ministry of Agriculture, Egypt. Procedia Computer Science. https://doi.org/10.1016/j.procs.2015.09.007es
dc.source.bibliographicCitationKim, J. Y., Lee, C. G., Baek, S. H., & Rhee, J.-Y. (2015). Open farm information system data-exchange platform for interaction with agricultural information systems. Agricultural Engineering International: CIGR Journal, 17(2), 296–309. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936884359&partnerID=40&md5=34d587334fc90f1e940e500ef50bd226es
dc.source.bibliographicCitationKim, T.-H., Solanki, V. S., Baraiya, H. J., Mitra, A., Shah, H., & Roy, S. (2020). A smart, sensible agriculture system using the exponential moving average model. Symmetry, 12(3). https://doi.org/10.3390/sym12030457es
dc.source.bibliographicCitationKitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary study. In Information and Software Technology (Vol. 52, Issue 8, pp. 792–805). https://doi.org/10.1016/j.infsof.2010.03.006es
dc.source.bibliographicCitationKulkarni, N. H., Srinivasan, G. N., Sagar, B. M., & Cauvery, N. K. (2018). Improving Crop Productivity Through A Crop Recommendation System Using Ensembling Technique. 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), 114–119. https://doi.org/10.1109/CSITSS.2018.8768790es
dc.source.bibliographicCitationKumar, A, Kumar, A., De, A., Shekhar, S., & Singh, R. K. (2019). IoT based farming recommendation system using soil nutrient and environmental condition detection. International Journal of Innovative Technology and Exploring Engineering, 8(11), 3055–3060. https://doi.org/10.35940/ijitee.K2335.0981119es
dc.source.bibliographicCitationKumar, Avinash, Sarkar, S., & Pradhan, C. (2019). Recommendation system for crop identification and pest control technique in agriculture. Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, 185–189. https://doi.org/10.1109/ICCSP.2019.8698099es
dc.source.bibliographicCitationLacasta, J., Javier Lopez-Pellicer, F., Espejo-Garcia, B., Nogueras-Iso, J., & Javier Zarazaga-Soria, F. (2018). Agricultural recommendation system for crop protection. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 152, 82–89. https://doi.org/10.1016/j.compag.2018.06.049es
dc.source.bibliographicCitationLagos-Ortiz, K., del Pilar Salas-Zárate, M., Paredes-Valverde, M. A., García-Díaz, J. A., & Valencia-García, R. (2020a). Agrient: A knowledge-based web platform for managing insect pests of field crops. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031040es
dc.source.bibliographicCitationLagos-Ortiz, K., del Pilar Salas-Zárate, M., Paredes-Valverde, M. A., García-Díaz, J. A., & Valencia-García, R. (2020b). Agrient: A knowledge-based web platform for managing insect pests of field crops. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031040es
dc.source.bibliographicCitationLaliwala, Z., Sorathia, V., & Chaudhary, S. (2006). Semantic and Rule Based Event-driven Services-Oriented Agricultural Recommendation System. 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06), 24. https://doi.org/10.1109/ICDCSW.2006.95es
dc.source.bibliographicCitationLian, J. W., & Ke, C. K. (2016). Using a modified ELECTRE method for an agricultural product recommendation service on a mobile device. Computers and Electrical Engineering, 56, 277–288. https://doi.org/10.1016/j.compeleceng.2015.11.014es
dc.source.bibliographicCitationLogan, J., Mueller, M. A., & Graves, C. R. (1998). Oilseeds: A comparison of early and recommended soybean production systems in Tennessee. Journal of Production Agriculture, 11(3), 319–325. https://doi.org/10.2134/jpa1998.0319es
dc.source.bibliographicCitationMajumdar, J., Naraseeyappa, S., & Ankalaki, S. (2017). Analysis of agriculture data using data mining techniques: application of big data. Journal of Big Data. https://doi.org/10.1186/s40537-017-0077-4es
dc.source.bibliographicCitationMalnou, C. S., Jaggard, K. W., & Sparkes, D. L. (2006). A canopy approach to nitrogen fertilizer recommendations for the sugar beet crop. European Journal of Agronomy, 25(3), 254–263. https://doi.org/10.1016/j.eja.2006.06.002es
dc.source.bibliographicCitationManoj Athreya, A., Hrithik Gowda, S., Madhu, S., & Ravikumar, V. (2019a). Agriculture based recommender system using IoT - A research. International Journal of Recent Technology and Engineering, 8(2 Special Issue 8), 1817–1821. https://doi.org/10.35940/ijrte.B1161.0882S819es
dc.source.bibliographicCitationManoj Athreya, A., Hrithik Gowda, S., Madhu, S., & Ravikumar, V. (2019b). Agriculture based recommender system using IoT - A research. International Journal of Recent Technology and Engineering, 8(2 Special Issue 8), 1817–1821. https://doi.org/10.35940/ijrte.B1161.0882S819es
dc.source.bibliographicCitationMantovani, E. C., & Magdalena, C. (n.d.). Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur. http://www.iica.intes
dc.source.bibliographicCitationMantovani, E. C., & Magdalena, C. (2014). Manual de agricultura de precisión. Embrapa Milho e Sorgo-Livro Científico (ALICE).es
dc.source.bibliographicCitationMokarrama, M J, & Arefin, M. S. (2017). RSF: A recommendation system for farmers. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 843–850. https://doi.org/10.1109/R10-HTC.2017.8289086es
dc.source.bibliographicCitationMokarrama, Miftahul Jannat, & Arefin, M. S. (2018). RSF: A recommendation system for farmers. 5th IEEE Region 10 Humanitarian Technology Conference 2017, R10-HTC 2017, 2018-Janua, 843–850. https://doi.org/10.1109/R10-HTC.2017.8289086es
dc.source.bibliographicCitationMontesinos-López, O. A., Montesinos-López, A., Crossa, J., Montesinos-López, J. C., Mota-Sanchez, D., Estrada-González, F., Gillberg, J., Singh, R., Mondal, S., & Juliana, P. (2018). Prediction of multiple-trait and multiple-environment genomic data using recommender systems. G3: Genes, Genomes, Genetics, 8(1), 131–147. https://doi.org/10.1534/g3.117.300309es
dc.source.bibliographicCitationNeela, R., & Nithya, P. (2019). Fertilizers recommendation system for disease prediction in tree leave. International Journal of Scientific and Technology Research, 8(11), 3343–3346. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075556373&partnerID=40&md5=133e09f3729c2a42d1b491e90a8b51d4es
dc.source.bibliographicCitationNguyen, V. G. N., Drogoul, A., & Huynh, H. X. (2012). Toward an agent-based multi-scale recommendation system for Brown plant hopper control. Proceedings - UKSim-AMSS 6th European Modelling Symposium, EMS 2012, 9–14. https://doi.org/10.1109/EMS.2012.18es
dc.source.bibliographicCitationNimirthi, P., Venkata Krishna, P., Obaidat, M. S., & Saritha, V. (2019). A framework for sentiment analysis based recommender system for agriculture using deep learning approach. SpringerBriefs in Applied Sciences and Technology, 59–66. https://doi.org/10.1007/978-981-13-1456-8_5es
dc.source.bibliographicCitationOrozco, Ó. A., & Llano Ramírez, G. (2016). Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión. Revista Ingenierías Universidad de Medellín, 15(28), 103–124. https://doi.org/10.22395/rium.v15n28a6es
dc.source.bibliographicCitationOTIC MinAgricultura Colombia. (2017). Plan Estratégico de Tecnologías de Información y Comunicación Sectorial.es
dc.source.bibliographicCitationPatil, N. N., & Saiyyad, M. A. M. (2019). Machine learning technique for crop recommendation in agriculture sector. International Journal of Engineering and Advanced Technology, 9(1), 1359–1363. https://doi.org/10.35940/ijeat.A1171.109119es
dc.source.bibliographicCitationPawar, M., & Chillarge, G. (2018). Soil Toxicity Prediction and Recommendation System Using Data Mining In Precision Agriculture. 2018 3rd International Conference for Convergence in Technology (I2CT), 1–5. https://doi.org/10.1109/I2CT.2018.8529754es
dc.source.bibliographicCitationPrithvi Ram, V., Rajeshwari, S. B., & Kalliman, J. S. (2019). Smart yield accuracy prediction using linear regression and collaborative filtration. International Journal of Recent Technology and Engineering, 8(3), 664–670. https://doi.org/10.35940/ijrte.B2657.098319es
dc.source.bibliographicCitationPudumalar, S., Ramanujam, E., Rajashree, R. H., Kavya, C., Kiruthika, T., & Nisha, J. (2017a). Crop recommendation system for precision agriculture. 2016 8th International Conference on Advanced Computing, ICoAC 2016, 32–36. https://doi.org/10.1109/ICoAC.2017.7951740es
dc.source.bibliographicCitationPudumalar, S., Ramanujam, E., Rajashree, R. H., Kavya, C., Kiruthika, T., & Nisha, J. (2017b). Crop recommendation system for precision agriculture. 2016 Eighth International Conference on Advanced Computing (ICoAC), October, 32–36. https://doi.org/10.1109/ICoAC.2017.7951740es
dc.source.bibliographicCitationPudumalar, S., Ramanujam, E., Rajashree, R. H., Kavya, C., Kiruthika, T., & Nisha, J. (2017c). Crop recommendation system for precision agriculture. 2016 Eighth International Conference on Advanced Computing (ICoAC), October, 32–36. https://doi.org/10.1109/ICoAC.2017.7951740es
dc.source.bibliographicCitationRahman, K. M. A., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030759es
dc.source.bibliographicCitationRahn, C. R. (2018). Challenges of devising nitrogen recommendation systems for open field vegetables. Acta Horticulturae, 1192, 11–20. https://doi.org/10.17660/ActaHortic.2018.1192.2es
dc.source.bibliographicCitationRaja, S. K. S., Rishi, R., Sundaresan, E., & Srijit, V. (2017). Demand based crop recommender system for farmers. 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), 2018-Janua(Tiar), 194–199. https://doi.org/10.1109/TIAR.2017.8273714es
dc.source.bibliographicCitationRen, Z., & Lu, X. (2012). Design of fertilization recommendation knowledge base and appllication. 2012 1st International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2012, 203–207. https://doi.org/10.1109/Agro-Geoinformatics.2012.6311640es
dc.source.bibliographicCitationRevathi, P., Revathi, R., & Hemalatha, M. (2011). Comparative Study of Knowledge in Crop Diseases Using Machine Learning Techniques. Inter-National Journal of Computer Science and Information Technologies (IJCSIT), 2(5), 2180–2182.es
dc.source.bibliographicCitationRicci, F., Rokach, L., Shapira, B., Kantor, P. B., & Ricci, F. (2011). Recommender Systems Handbook. In Recommender Systems Handbook. https://doi.org/10.1007/978-0-387-85820-3es
dc.source.bibliographicCitationSantos, F. C. dos, Neves, J. C. L., Novais, R. F., Alvarez V., V. H., & Sediyama, C. S. (2008). Modelagem da recomendação de corretivos e fertilizantes para a cultura da soja. Revista Brasileira de Ciência Do Solo, 32(4), 1661–1674. https://doi.org/10.1590/s0100-06832008000400031es
dc.source.bibliographicCitationSENSOVANT. (2014). Sensores / Instrumentos para Agricultura y Ganadería. http://sensovant.com/productos-aplicaciones/agricultura/instrumentos-tecnologicos-agricultura.htmles
dc.source.bibliographicCitationSilva, A. P. da, Alvarez V, V. H., Souza, A. P. de, Neves, J. C. L., Novais, R. F., & Dantas, J. P. (2009). Sistema de recomendação de fertilizantes e corretivos para a cultura do abacaxi - fertcalc-abacaxi. Revista Brasileira de Ciência Do Solo, 33(5), 1269–1280. https://doi.org/10.1590/s0100-06832009000500020es
dc.source.bibliographicCitationSujithra, T., Thanjaivadivel, M., & Durai, S. (2017a). Fertilizer recommendation system for coconut cultivation. International Journal of Civil Engineering and Technology, 8(9), 813–819. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029895779&partnerID=40&md5=1c6e972f7cf611f24f4aa08e7fbd6bf0es
dc.source.bibliographicCitationSujithra, T., Thanjaivadivel, M., & Durai, S. (2017b). Fertilizer recommendation system for coconut cultivation. International Journal of Civil Engineering and Technology, 8(9), 813–819. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029895779&partnerID=40&md5=1c6e972f7cf611f24f4aa08e7fbd6bf0es
dc.source.bibliographicCitationSuma, V., Shetty, R. A., Tated, R. F., Rohan, S., & Pujar, T. S. (2019). CNN based Leaf Disease Identification and Remedy Recommendation System. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), 395–399. https://doi.org/10.1109/ICECA.2019.8821872es
dc.source.bibliographicCitationWard, B. P., Brown-Guedira, G., Tyagi, P., Kolb, F. L., van Sanford, D. A., Sneller, C. H., & Griffey, C. A. (2019). Multienvironment and multitrait genomic selection models in unbalanced early-generation wheat yield trials. Crop Science, 59(2), 491–507. https://doi.org/10.2135/cropsci2018.03.0189es
dc.source.bibliographicCitationWong, M. T. F., Corner, R. J., & Cook, S. E. (2001). A decision support system for mapping the site-specific potassium requirement of wheat in the field. Australian Journal of Experimental Agriculture, 41(5), 655. https://doi.org/10.1071/EA00191es
dc.source.bibliographicCitationXu, M., Zhang, J., Wu, F., & Wang, X. (2015). Preliminary the diagnosis and Recommendation Integrated System (DRIS) norms for evaluating the nutrient status of apple. Advance Journal of Food Science and Technology, 7(2), 74–80. https://doi.org/10.19026/ajfst.7.1270es
dc.source.bibliographicCitationYu, F., Zhang, Q., Luan, R., Zhang, J., & Liu, X. (2013). Application and improvement of intelligent recommendation for Agricultural Information. 2013 Ninth International Conference on Natural Computation (ICNC), 1077–1081. https://doi.org/10.1109/ICNC.2013.6818137es
dc.source.bibliographicCitationZhao, Y., & Bai, S. H. (2012). Research on optimizing recommend system for agriculture information personalization based on user clustering. Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, ICICEE 2012, 1477–1480. https://doi.org/10.1109/ICICEE.2012.388es
Appears in Collections:Ingeniería de Sistemas

Files in This Item:
File Description SizeFormat 
2020_Estudio_sistemas_agricultura.pdfTrabajo de grado1.93 MBAdobe PDFView/Open
2020_Estudio_sistemas_agricultura-LicenciadeUso.pdfLicencia de uso247.27 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.