Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/32681
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.coverage.temporal85es
dc.creatorFranco-Muñoz, Carlos-
dc.creatorLaiton-Donato, Katherine-
dc.creatorWiesner, Magdalena-
dc.creatorEscandón, Patricia-
dc.creatorUsme-Ciro, Jose A.-
dc.creatorFranco-Sierra, Nicolas D.-
dc.creatorFlórez-Sánchez, Astrid C.-
dc.creatorGómez-Rangel, Sergio-
dc.creatorRodríguez-Calderon, Luis D.-
dc.creatorBarbosa-Ramirez, Juliana-
dc.creatorOspitia-Baez, Erika-
dc.creatorWalteros, Diana M.-
dc.creatorOspina-Martinez, Martha L.-
dc.creatorMercado-Reyes, Marcela-
dc.date.accessioned2021-01-20T20:53:10Z-
dc.date.available2021-01-20T20:53:10Z-
dc.date.issued2020-09-17-
dc.identifier.issn1567-1348es
dc.identifier.uri10.1016/j.meegid.2020.104557es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/32681-
dc.description.abstractSARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In anunpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.es
dc.format.extent7es
dc.publisherCentro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, Colombiaes
dc.relation.ispartofInfection, Genetics and Evolutiones
dc.relation.isversionofhttps://www.sciencedirect.com/science/article/abs/pii/S1567134820303889?via%3Dihubes
dc.subjectSARS-CoV-2es
dc.subjectEspículaes
dc.subjectNucleocapsidees
dc.subjectSudaméricaes
dc.subject.otherSARS-CoV-2es
dc.subject.otherSpikees
dc.subject.otherNucleocapsides
dc.subject.otherSouth Americaes
dc.subject.otherNon-synonymous substitutionses
dc.subject.otherSustituciones no sinónimases
dc.titleSubstitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South Americaes
dc.typeArtículoes
dc.rights.licenseAtribuciónes
dc.publisher.departmentSanta Martaes
dc.publisher.programMedicinaes
dc.creator.mailjose.usmec@campusucc.edu.coes
dc.creator.mailcefrancom@unal.edu.coes
dc.identifier.bibliographicCitationFranco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557.es
dc.rights.accessRightsopenAccesses
dc.publisher.editorDr. Michel Tibayrences
dc.source.bibliographicCitationÁlvarez-Díaz, D.A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J.A., Franco-Sierra, N.D., Flórez-Sánchez, A.C., Gómez-Rangel, S., Rodríguez-Calderon, L.D., BarbosaRamirez, J., Ospitia-Baez, E., Walteros, D.M., Ospina-Martinez, M.L., Mercado-Reyes, M., 2020. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect. Genet. Evol. 84, 104390.es
dc.source.bibliographicCitationBartolini, B., Rueca, M., Gruber, C.E.M., Messina, F., Carletti, F., Giombini, E., Lalle, E., Bordi, L., Matusali, G., Colavita, F., Castilletti, C., Vairo, F., Ippolito, G., Capobianchi, M.R., Di Caro, A., 2020. SARS-CoV-2 phylogenetic analysis, Lazio region, Italy, February–March 2020. Emerg. Infect. Dis. 26.es
dc.source.bibliographicCitationBecerra-Flores, M., Cardozo, T., 2020. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract. 74, e13525.es
dc.source.bibliographicCitationBhattacharyya, C., Das, C., Ghosh, A., Singh, A.K., Mukherjee, S., Majumder, P.P., Basu, A., Biswas, N.K., 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. bioRxiv.es
dc.source.bibliographicCitationbrian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools.es
dc.source.bibliographicCitationBrufsky, A., 2020. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J. Med. Virol. 92, 1386–1390.es
dc.source.bibliographicCitationCorman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surv. 25, 2000045.es
dc.source.bibliographicCitationDu, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., 2009. The spike protein of SARSCoV—a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236.es
dc.source.bibliographicCitationEdgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.es
dc.source.bibliographicCitationgob.br, 2020. Coronavirus COVID-19.es
dc.source.bibliographicCitationGupta, A.M., Mandal, S., 2020. Loss of Epitopes from SARS-Cov-2 Proteins for Non-synonymous Mutations: A Potential Global Threat. OSF Preprints.es
dc.source.bibliographicCitationHe, X., Lau, E.H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y., Tan, X., 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675.es
dc.source.bibliographicCitationINS, 2020. Coronavirus (COVID - 2019) en Colombia. Instituto Nacional de Salud.es
dc.source.bibliographicCitationJacofsky, D., Jacofsky, E.M., Jacofsky, M., 2020. Understanding antibody testing for COVID-19. J. Arthroplast. 35, 574–581.es
dc.source.bibliographicCitationKim, S.-J., Nguyen, V.-G., Park, Y.-H., Park, B.-K., Chung, H.-C., 2020. A novel synonymous mutation of SARS-CoV-2: is this possible to affect their antigenicity and immunogenicity? Vaccines 8, 220.es
dc.source.bibliographicCitationKorber, B., Fischer, W., Gnanakaran, S.G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E.E., Bhattacharya, T., Parker, M.D., 2020. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv.es
dc.source.bibliographicCitationKumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874es
dc.source.bibliographicCitationLee, C.Y.-P., Lin, R.T., Renia, L., Ng, L.F., 2020. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 11, 879.es
dc.source.bibliographicCitationLi, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur. 81 (2), 318–356.es
dc.source.bibliographicCitationNakashima, A., 2020. The Global Emergences of Multiple SARS-CoV-2 Sub-Strains: Digital Annotations for Human Behaviors May Assist Automated Retracing of Symptomatic Features and Origins.es
dc.source.bibliographicCitationQuick, J., 2020. nCoV-2019 Sequencing Protocol. protocols.ioes
dc.source.bibliographicCitationRambaut, A., Holmes, E.C., Hill, V., O'Toole, Á., McCrone, J., Ruis, C., du Plessis, L., Pybus, O.G., 2020. hCoV-2019/Lineages.es
dc.source.bibliographicCitationRomano, M., Ruggiero, A., Squeglia, F., Maga, G., Berisio, R., 2020. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9, 1267.es
dc.source.bibliographicCitationShi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 368, 1016–1020.es
dc.source.bibliographicCitationSIB, 2020. Betacoronavirus. Swiss Institute of Bioinformatics.es
dc.source.bibliographicCitationSubissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Canard, B., Imbert, I., 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. 111, E3900–E3909es
dc.source.bibliographicCitationTang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7 (6), 1012–1023.es
dc.source.bibliographicCitationVillabona-Arenas, C.J., Hanage, W.P., Tully, D.C., 2020. Phylogenetic interpretation during outbreaks requires caution. Nat. Microbiol. 5, 876–877. WHO, 2020aes
dc.source.bibliographicCitationWHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization.es
dc.source.bibliographicCitationWHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization.es
dc.source.bibliographicCitationYan, Y., Chang, L., Wang, L., 2020. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev. Med. Virol. e2106.es
dc.source.bibliographicCitationYount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N., Baric, R.S., 2005. Severe acute respiratory syndrome coronavirus groupspecific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922.es
dc.description.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318507es
dc.description.orcidhttps://orcid.org/0000-0002-8093-0544es
dc.description.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008981es
dc.description.googlescholarhttps://scholar.google.com.co/citations?user=cU2KyT4AAAAJ&hl=enes
Appears in Collections:Medicina



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.