Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/32654
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.coverage.temporal1es
dc.creatorAydi, Abdelkarim-
dc.creatorOrtiz, Claudia Patricia-
dc.creatorCaviedes Rubio, Diego Ivan-
dc.creatorAyadi, Cherifa-
dc.creatorHbaieb, Souhaira-
dc.creatorDelgado, Daniel Ricardo-
dc.date.accessioned2021-01-19T21:58:48Z-
dc.date.available2021-01-19T21:58:48Z-
dc.date.issued2021-01-04-
dc.identifier.issn18761070es
dc.identifier.urihttps://doi.org/10.1016/j.jtice.2020.12.031es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/32654-
dc.descriptionLa solubilidad de sulfametazina (SMT) en mezclas de codisolvente de etilenglicol (EG) + agua (W) se determinó a nueve temperaturas (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15 y 318.15 K) por medio de la agitación método. A partir de los datos de solubilidad, se calcularon las funciones termodinámicas de solución, transferencia y mezcla utilizando las ecuaciones de Gibbs y van´t Hoff. Por otro lado, los parámetros de solvatación preferencial de SMT se determinaron mediante el método de las integrales inversas de Kirkwood-Buff (IKBI). En términos generales, la solubilidad del SMT se ve favorecida por el aumento de temperatura y la disminución de la polaridad del sistema codisolvente, por lo que la máxima solubilidad se alcanza en EG puro a 318.15 K y la mínima en agua pura a 278.15 K. Energía de Gibbs es positivo en todos los casos, con una mayor contribución del componente energético (entalpía de la solución). En cuanto a la compensación entalpía-entrópica, el proceso es impulsado en todos los casos por la entalpía de la solución. Finalmente, SMT se solvata preferentemente con agua en mezclas con mayor polaridad y con EG en mezclas menos polares.es
dc.description.abstractThe solubility of sulfamethazine (SMT) in ethylene glycol (EG) + water (W) cosolvent mixtures was determined at nine temperatures (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15 K) by means of the stirring method. From the solubility data, the thermodynamic functions of solution, transfer and mixing were calculated using the Gibbs and van´t Hoff equations. On the other hand, the preferential solvation parameters of SMT were determined by means of the method of the inverse integrals of Kirkwood-Buff (IKBI). In general terms, the solubility of SMT is favored by the increase in temperature and the decrease in the polarity of the cosolvent system, thus the maximum solubility is reached in pure EG at 318.15 K and the minimum in pure water at 278.15 K. Gibbs energy is positive in all cases, with a higher contribution from the energy component (enthalpy of solution). Regarding enthalpy-entropic compensation, the process is driven in all cases by the enthalpy of solution. Finally, SMT is preferentially solvated by water in mixtures with higher polarity and by EG in less polar mixtures.es
dc.format.extent10es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neivaes
dc.relation.ispartofJournal of the Taiwan Institute of Chemical Engineerses
dc.relation.isversionofhttps://bbibliograficas.ucc.edu.co:2152/science/article/pii/S1876107020304405#!es
dc.subjectSulfametazinaes
dc.subjectSolubilidades
dc.subjectSolvatación preferenciales
dc.subjectvan´t Hoffes
dc.subjectTermodinámica de solucioneses
dc.subject.otherSulfamethazinees
dc.subject.otherSolubilityes
dc.subject.otherPreferential solvationes
dc.subject.othervan´t Hoffes
dc.subject.otherSolution thermodynamicses
dc.titleSolution thermodynamics and preferential solvation of sulfamethazine in ethylene glycol + water mixtureses
dc.typeArtículoes
dc.rights.licenseAtribución – Sin Derivares
dc.publisher.departmentNeivaes
dc.publisher.programIngeniería Industriales
dc.description.tableOfContentsHighlights. -- Abstract. -- Graphical abstract. -- Keywords. -- 1. Introduction. -- 2. Materials and methods. -- 3. Results. -- 4. Conclusions. -- Declaration of Competing Interest. -- Acknowledgments. -- References.es
dc.creator.maildanielr.delgado@campusucc.edu.coes
dc.identifier.bibliographicCitationAbdelkarim, A., Ortiz, C. P., Caviedes-Rubio, D. I. Ayadi, C., Hbaieb S. y Ricardo Delgado, D. (2021). Solution thermodynamics and preferential solvation of sulfamethazine in ethylene glycol + water mixtures. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2020.12.031es
dc.rights.accessRightsembargoedAccesses
dc.publisher.editorElsevier B.V.es
dc.source.bibliographicCitationL.H. Sophian, D.L. Piper, G.H. Schneller The Sulfapyrimidines: sulfadiazine, sulfamerazine, sulfamethazine Literary Licens. (2012)es
dc.source.bibliographicCitationJ.E. Riviere, M.G. Papich Veterinary pharmacology and therapeutics (10th ed.) (2017)es
dc.source.bibliographicCitationJ.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R Delgado Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures Fluid Phase Equilib, 505 (2020), Article 112361 10.1016/j.fluid.2019.112361es
dc.source.bibliographicCitationB. Aday, P. Sola, F. Çolak, M. Kaya Synthesis of novel sulfonamide analogs containing sulfamerazine/sulfaguanidine and their biological activities J Enzym Inhib Med Chem, 31 (2016), pp. 1005-1010 10.3109/14756366.2015.1079183es
dc.source.bibliographicCitationA.N. Martin, P. Bustamante Physical pharmacy: physical chemical principles in the pharmaceutical sciences (4th ed.), Lippincott Williams & Wilking, Philadelphia (1993)es
dc.source.bibliographicCitationS.H. Yalkowsky Solubility and solubilization in aqueous media American Chemical Society, New York (1999)es
dc.source.bibliographicCitationS.H. Yalkowsky, Y. He, P. Jain Handbook of aqueous solubility data (2nd ed.), CRC Press, Boca Raton (2016) 10.1201/ebk1439802458es
dc.source.bibliographicCitationA. Jouyban, W.E. Acree, F. Martínez Preferential solvation of apremilast in some (Transcutol® + water) mixtures J Mol Liq, 316 (2020), Article 113905 10.1016/j.molliq.2020.113905es
dc.source.bibliographicCitationM. Barzegar-Jalali, S.N. Mirheydari, F. Martinez, A. Jouyban Lamotrigine solubility in 1-propanol + water mixtures at different temperatures: experimental data and mathematical modelling Phys Chem Liq, 58 (2020), pp. 432-445 10.1080/00319104.2019.1600141es
dc.source.bibliographicCitationA.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures Phys Chem Liq (2019) 10.1080/00319104.2019.1636379es
dc.source.bibliographicCitationT. Higuchi, K.A. Connors Phase-solubility techniques Adv Anal Inst, 4 (1965), pp. 117-212es
dc.source.bibliographicCitationD.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures J Chem Thermodyn, 97 (2016), pp. 264-276 10.1016/J.JCT.2016.02.002es
dc.source.bibliographicCitationD.R. Delgado, F. Martínez Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol+water mixtures Fluid Phase Equilib, 360 (2013), pp. 88-96 10.1016/j.fluid.2013.09.018es
dc.source.bibliographicCitationD.R. Delgado, F. Martínez Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures J Solut Chem, 43 (2014), pp. 836-852 10.1007/s10953-014-0169-0es
dc.source.bibliographicCitationM. Del Mar Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15K J Mol Liq, 204 (2015), pp. 132-136 10.1016/j.molliq.2015.01.047es
dc.source.bibliographicCitationA. Barton CRC handbook of solubility parameters and other cohesion parameters (2nd), CRC Press LLC, Boca Raton (FL) (1991)es
dc.source.bibliographicCitationL. Maury, J. Rambaud, B. Pauvert, Y. Lasserre, G. Bergé, M. Audran Physicochemical and structural study of sulfamethazine J Pharm Sci, 74 (1985), pp. 422-426 10.1002/JPS.2600740411es
dc.source.bibliographicCitationM. Sorrenti, G.P. Bettinetti, A. Negri Thermoanalytical characterization ofpseudopolymorphs of sulphadimidine and sulphadimidine–trimethoprim molecular complexes Thermochim Acta, 321 (1998), pp. 67-72 10.1016/S0040-6031(98)00441-9es
dc.date.embargoEnd2022-12-31-
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116es
dc.description.orcidhttps://orcid.org/0000-0002-4835-9739es
dc.description.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151es
dc.description.googlescholarhttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=eses
Appears in Collections:Ingeniería Industrial

Files in This Item:
File Description SizeFormat 
Journal of the Taiwan Institute of Chemical Engineers.pdfArtículo científico Q1864.9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.