Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/28358
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.coverage.temporal182es
dc.creatorBurgos, Clara-
dc.creatorCortés, Juan Carlos-
dc.creatorLombana, Iván Camilo-
dc.creatorMartínez Rodríguez, David-
dc.creatorVillanueva, Rafael Jacinto-
dc.date.accessioned2020-12-02T21:56:40Z-
dc.date.available2020-12-02T21:56:40Z-
dc.date.issued2020-12-02-
dc.identifier.issn0022-3239es
dc.identifier.urihttps://doi.org/10.1007/s10957-018-1382-6es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/28358-
dc.description.abstractIn this paper, we retrieve data about the frequent users of electronic commerce during the period 2011–2016 from the Spanish National Institute of Statistics. These data, coming from surveys, have intrinsic uncertainty that we describe using appropriate random variables. Then, we propose a stochastic model to study the dynamics of frequent users of electronic commerce. The goal of this paper is to solve the inverse problem that consists of determining the model parameters as suitable parametric random variables, in such a way the model output be capable of capturing the data uncertainty, at the time instants where sample data are available, via adequate probability density functions. To achieve the aforementioned goal, we propose a computational procedure that involves building a nonlinear objective function, based on statistical moment measures, to be minimized using a variation of the particle swarm optimization algorithm.es
dc.format.extent785-796es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Ibaguées
dc.relation.ispartofJournal of Optimization Theory and Applicationses
dc.subject.otherInverse problemes
dc.subject.otherUncertainty quantificationes
dc.subject.otherRandom optimization computational methodses
dc.subject.otherNonlinear stochastic modeles
dc.subject.otherProbability density functiones
dc.titleModeling the Dynamics of the Frequent Users of Electronic Commerce in Spain Using Optimization Techniques for Inverse Problems with Uncertaintyes
dc.typeArtículoes
dc.rights.licenseAtribuciónes
dc.publisher.departmentIbaguées
dc.publisher.programIngeniería Civiles
dc.creator.mailclabursi@gmail.comes
dc.creator.mailjccortes@mat.upv.eses
dc.creator.mailivan.lombana@campusucc.edu.coes
dc.creator.maildamarro3@upv.eses
dc.creator.mailrjvillan@imm.upv.eses
dc.identifier.bibliographicCitationLombana, I. C., Burgos, C., Cortés J. C., Villanueva R. J. y Martínez D. (2019). Modeling the Dynamics of the Frequent Users of Electronic Commerce in Spain Using Optimization Techniques for Inverse Problems with Uncertainty. Journal of Optimization Theory and Applications, (182), 785-796. https://doi.org/10.1007/s10957-018-1382-6es
dc.rights.accessRightsrestrictedAccesses
dc.source.bibliographicCitationDorini, F.A., Cecconello, M.S., Dorini, M.B.: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016). https://doi.org/10.1016/j.cnsns.2015.09.009es
dc.source.bibliographicCitationHussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012). https://doi.org/10.1016/j.amc.2011.12.088es
dc.source.bibliographicCitationDorini, F., Cunha, M.: Statistical moments of the random linear transport equation. J. Comput. Phys. 227(19), 8541–8550 (2008). https://doi.org/10.1016/j.jcp.2008.06.002es
dc.source.bibliographicCitationXu, Z., Tipireddy, R., Lin, G.: Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. Appl. Math. Model. 40(9–10), 5542–5559 (2016). https://doi.org/10.1016/j.apm.2015.12.04es
dc.source.bibliographicCitationMourad, K., Debbouche, A.: Complete controllability of nonlocal fractional stochastic differential evolution equations with Poisson jumps in Hilbert spaces. Int. J. Adv. Appl. Math. Mech. 3(1), 41–48 (2015)es
dc.source.bibliographicCitationCasabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). https://doi.org/10.1016/j.cnsns.2015.08.009es
dc.source.bibliographicCitationCasabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: Computing probabilistic solutions of the Bernoulli random differential equation. J. Comput. Appl. Math. 309, 396–407 (2017). https://doi.org/10.1016//j.cam.2016.02.034es
dc.source.bibliographicCitationCortés, J.C., Santonja, F.J., Tarazona, A.C., Villanueva, R.J., Villanueva-Oller, J.: A probabilistic estimation and prediction technique for dynamic continuous social science models: the evolution of the attitude of the basque country population towards ETA as a case study. Appl. Math. Comput. 264, 13–20 (2015). https://doi.org/10.1016/j.amc.2015.03.128es
dc.source.bibliographicCitationSpanish INE: Encuesta sobre equipamiento y uso de tecnologías de información y comunicación en los hogares (Survey on equipment and use of the information technologies and communication in the household. http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176741&menu=resultados&idp=1254735576692. Accessed 20 June 2018es
dc.source.bibliographicCitationSpanish INE: Indicadores demográficos básicos (Basic demographic indicators). http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177003&menu=resultados&idp=1254735573002. Accessed 20 June 2018es
dc.source.bibliographicCitationChristakis, N.A., Fowler, J.H.: Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives. Little, Brown and Company, Boston (2009)es
dc.source.bibliographicCitationBrauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3516-1es
dc.source.bibliographicCitationNorman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Wiley, London (1994)es
dc.source.bibliographicCitationKhemka, N., Jacob, C.: Exploratory toolkit for evolutionary and swarm-based optimization. Math. J. 11(3), 376–391 (2010). https://doi.org/10.3888/tmj.11.3-5es
dc.source.bibliographicCitationAcedo, L., Burgos, C., Hidalgo, J.I., Sánchez-Alonso, V., Villanueva, R.J., Villanueva-Oller, J.: Calibrating a large network model describing the transmission dynamics of the human papillomavirus using a particle swarm optimization algorithm in a distributed computing environment. Int. J. High Perf. Comput. Appl. (2017). https://doi.org/10.1177/1094342017697862es
dc.date.embargoEnd2026-12-02-
dc.description.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001220268es
dc.description.orcidhttp://orcid.org/0000-0002-6528-2155es
dc.description.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002516es
Appears in Collections:Ingeniería Civil

Files in This Item:
File Description SizeFormat 
2020_modeling_dynamics_frequent_formato.pdfFormato de licencia de uso de obra489.67 kBAdobe PDFView/Open Request a copy
2020_modeling_dynamics_frequent.pdfArtículo554.71 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.