Please use this identifier to cite or link to this item:
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.creatorFreitas, SC-
dc.creatorCorrea-Uribe, A-
dc.creatorMartins, MCL-
dc.creatorPelaez-Vargas, Alejandro-
dc.identifier.issn1687-8736 (Online)es
dc.description.abstractImplant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigadoes
dc.relation.ispartofInternational Journal of Dentistryes
dc.subjectImplantes dentaleses
dc.subject.otherDental implantses
dc.titleSelf-Assembled Monolayers for Dental Implantses
dc.identifier.bibliographicCitationFreitas SC, Correa-Uribe A, Martins MCL, Pelaez-Vargas A. Self-Assembled Monolayers for Dental Implants. Int J Dent. 2018;2018:4395460. Published 2018 Feb 6. doi:10.1155/2018/4395460es
dc.publisher.editorSilvio M. Melonies
dc.source.bibliographicCitationPetersen P. E. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century. The approach of the WHO Global Oral Health Programme. Community Dentistry and Oral Epidemiology. 2003;31(1):3–24. doi: 10.1046/
dc.source.bibliographicCitationA. K. Mascarenhas, “Mouthguards reduce orofacial injury during sport activities, but may not reduce concussion,” Journal of Evidence Based Dental Practice, vol. 12, no. 2, pp. 90-91,
dc.source.bibliographicCitationK. Bücher, C. Neumann, R. Hickel, and J. Kühnisch, “Traumatic dental injuries at a German University Clinic 2004-2008,” Dental Traumatology, vol. 29, no. 2, pp. 127–133,
dc.source.bibliographicCitationV. Tiwari, V. Saxena, U. Tiwari, A. Singh, M. Jain, and S. Goud, “Dental trauma and mouthguard awareness and use among contact and noncontact athletes in central India,” Journal of Oral Science, vol. 56, no. 4, pp. 239–243,
dc.source.bibliographicCitationH. E. Gonzalez and A. Manns, “Forward head posture: its structural and functional influence on the stomatognathic system, a conceptual study,” Cranio, vol. 14, no. 1, pp. 71–80,
dc.source.bibliographicCitationB. E. Pjetursson, U. Brägger, N. P. Lang, and M. Zwahlen, “Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs),” Clinical Oral Implants Research, vol. 18, pp. 97–113,
dc.source.bibliographicCitationI. K. Karoussis, G. E. Salvi, L. J. A. Heitz-Mayfield, U. Brägger, C. H. F. Hämmerle, and N. P. Lang, “Long-term implant prognosis in patients with and without a history of chronic periodontitis: a 10-year prospective cohort study of the ITI Dental Implant System,” Clinical Oral Implants Research, vol. 14, no. 3, pp. 329–339,
dc.source.bibliographicCitationT. Albrektsson, L. Sennerby, and A. Wennerberg, “State of the art of oral implants,” Periodontology 2000, vol. 47, no. 1, pp. 15–26,
dc.source.bibliographicCitationL. Sennerby, “Dental implants: matters of course and controversies,” Periodontology 2000, vol. 47, no. 1, pp. 9–14,
dc.source.bibliographicCitationR. A. Jaffin and C. L. Berman, “The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis,” Journal of Periodontology, vol. 62, no. 1, pp. 2–4,
dc.source.bibliographicCitationA. Pelaez-Vargas, D. Gallego-Perez, N. Higuita-Castro et al., “Micropatterned coatings for guided tissue regeneration in dental implantology,” in Cell Interaction, S. Gowder, Ed., pp. 273–302, InTech, London, UK,
dc.source.bibliographicCitationB. Klinge, M. Hultin, and T. Berglundh, “Peri-implantitis,” Dental Clinics of North America, vol. 49, no. 3, pp. 661–676,
dc.source.bibliographicCitationE. Silva, S. Félix, A. Rodriguez-Archilla, P. Oliveira, and J. Martins dos Santos, “Revisiting peri-implant soft tissue - histopathological study of the peri-implant soft tissue,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 2, pp. 611–618,
dc.source.bibliographicCitationM. Esposito, J.-M. Hirsch, U. Lekholm, and P. Thomsen, “Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology,” European Journal of Oral Sciences, vol. 106, no. 1, pp. 527–551,
dc.source.bibliographicCitationL. Rimondini, L. Cerroni, A. Carrassi, and P. Torricelli, “Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study,” International Journal of Oral & Maxillofacial Implants, vol. 17, no. 6, pp. 793–798,
dc.source.bibliographicCitationA. Tanner, M. F. J. Maiden, K. Lee, L. B. Shulman, and H. P. Weber, “Dental implant infections,” Clinical Infectious Diseases, vol. 25, no. 2, pp. S213–S217,
dc.source.bibliographicCitationA. Leonhardt, S. Renvert, and G. Dahlen, “Microbial findings at failing implants,” Clinical Oral Implants Research, vol. 10, no. 5, pp. 339–345,
dc.source.bibliographicCitationB. D. Boyan, C. H. Lohmann, D. D. Dean, V. L. Sylvia, D. L. Cochran, and Z. Schwartz, “Mechanisms involved in osteoblast response to implant surface morphology,” Annual Review of Materials Research, vol. 31, no. 1, pp. 357–371,
dc.source.bibliographicCitationP. M. Brett, J. Harle, V. Salih et al., “Roughness response genes in osteoblasts,” Bone, vol. 35, no. 1, pp. 124–133,
dc.source.bibliographicCitationZ. Shi, K. G. Neoh, E. T. Kang, K. P. Chye, and W. Wang, “Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration,” Biomacromolecules, vol. 10, no. 6, pp. 1603–1611,
dc.source.bibliographicCitationT. A. Barber, L. J. Gamble, D. G. Castner, and K. E. Healy, “In vitro characterization of peptide-modified p(AAm-co-EG/AAc) IPN-coated titanium implants,” Journal of Orthopaedic Research, vol. 24, no. 7, pp. 1366–1376, 2006. View at: Publisher Site | Google Scholares
dc.source.bibliographicCitationP. H. Chua, K. G. Neoh, E. T. Kang, and W. Wang, “Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion,” Biomaterials, vol. 29, no. 10, pp. 1412–1421,
dc.source.bibliographicCitationX. Zhou, S. Park, H. Mao, T. Isoshima, Y. Wang, and Y. Ito, “Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement,” International Journal of Nanomedicine, vol. 10, pp. 5597–5607,
dc.source.bibliographicCitationD. A. Puleo, R. A. Kissling, and M. S. Sheu, “A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy,” Biomaterials, vol. 23, no. 9, pp. 2079–2087,
dc.source.bibliographicCitationY. Tanaka, K. Matin, M. Gyo et al., “Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium,” Journal of Biomedical Materials Research Part A, vol. 95, no. 4, pp. 1105–1113,
dc.source.bibliographicCitationF. Zhang, Z. Zhang, X. Zhu, E. T. Kang, and K. G. Neoh, “Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion,” Biomaterials, vol. 29, no. 36, pp. 4751–4759,
dc.source.bibliographicCitationP. Renoud, B. Toury, S. Benayoun, G. Attik, and B. Grosgogeat, “Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances,” PLoS One, vol. 7, no. 7, Article ID e39367,
dc.source.bibliographicCitationS. M. Kang, B. Kong, E. Oh, J. S. Choi, and I. S. Choi, “Osteoconductive conjugation of bone morphogenetic protein-2 onto titanium/titanium oxide surfaces coated with non-biofouling poly(poly(ethylene glycol) methacrylate),” Colloids Surfaces B: Biointerfaces, vol. 75, no. 1, pp. 385–389,
dc.source.bibliographicCitationD. Ferris, “RGD-coated titanium implants stimulate increased bone formation in vivo,” Biomaterials, vol. 20, no. 23-24, pp. 2323–2331,
dc.source.bibliographicCitationH. C. Kroese-Deutman, J. van den Dolder, P. H. M. Spauwen, and J. A. Jansen, “Influence of RGD-loaded titanium implants on bone formation in vivo,” Tissue Engineering, vol. 11, no. 11-12, pp. 1867–1875,
dc.source.bibliographicCitationC. Lorenz, A. Hoffmann, G. Gross et al., “Coating of titanium implant materials with thin polymeric films for binding the signaling protein BMP2,” Macromolecular Bioscience, vol. 11, no. 2, pp. 234–244,
dc.source.bibliographicCitationH. Schliephake, J. Rublack, N. Aeckerle et al., “In vivo effect of immobilisation of bone morphogenic protein 2 on titanium implants through nano-anchored oligonucleotides,” European Cells and Materials, vol. 30, pp. 28–40,
dc.source.bibliographicCitationN. P. Huang, R. Michel, J. Voros et al., “Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption,” Langmuir, vol. 17, no. 2, pp. 489–498,
dc.source.bibliographicCitationL. G. Harris, S. Tosatti, M. Wieland, M. Textor, and R. G. Richards, “Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted- poly(ethylene glycol) copolymers,” Biomaterials, vol. 25, no. 18, pp. 4135–4148,
dc.source.bibliographicCitationS. Saxer, C. Portmann, S. Tosatti, K. Gademann, S. Zürcher, and M. Textor, “Surface assembly of catechol-functionalized poly(l-lysine)-graftpoly(ethylene glycol) copolymer on titanium exploiting combined electrostatically driven self-organization and biomimetic strong adhesion,” Macromolecules, vol. 43, no. 2, pp. 1050–1060,
dc.source.bibliographicCitationJ. L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor, and P. B. Messersmith, “Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA,” Langmuir, vol. 21, no. 2, pp. 640–646,
dc.source.bibliographicCitationF. Khalil, E. Franzmann, J. Ramcke et al., “Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel,” Colloids Surfaces B: Biointerfaces, vol. 117, pp. 185–192,
dc.source.bibliographicCitationJ.-Y. Wach, B. Malisova, S. Bonazzi et al., “Protein-resistant surfaces through mild dopamine surface functionalization,” Chemistry, vol. 14, no. 34, pp. 10579–10584,
dc.source.bibliographicCitationX. Khoo, G. A. O’Toole, S. A. Nair, B. D. Snyder, D. J. Kenan, and M. W. Grinstaff, “Staphylococcus aureus resistance on titanium coated with multivalent PEGylated-peptides,” Biomaterials, vol. 31, no. 35, pp. 9285–9292,
dc.source.bibliographicCitationD. Jedrzejczyk, T. Zdziech, and M. Hajduga, “Influence of modifying treatment of titanic implants on periimplantitis,” in Met 2012: Conference Proceedings, 21st International Conference on Metallurgy and Materials, pp. 1037–1043, Tanger Ltd., Brno, Czech Republic,
dc.source.bibliographicCitationY. Z. Wan, S. Raman, F. He, and Y. Huang, “Surface modification of medical metals by ion implantation of silver and copper,” Vacuum, vol. 81, no. 9, pp. 1114–1118,
dc.source.bibliographicCitationM. Yoshinari, Y. Oda, T. Kato, and K. Okuda, “Influence of surface modifications to titanium on antibacterial activity in vitro,” Biomaterials, vol. 22, no. 14, pp. 2043–2048,
dc.source.bibliographicCitationM. Yoshinari, Y. Oda, T. Kato, K. Okuda, and A. Hirayama, “Influence of surface modifications to titanium on oral bacterial adhesion in vitro,” Journal of Biomedical Materials Research, vol. 52, no. 2, pp. 388–394,
dc.source.bibliographicCitationH. L. Huang, Y. Y. Chang, M. C. Lai, C. R. Lin, C. H. Lai, and T. M. Shieh, “Antibacterial TaN-Ag coatings on titanium dental implants,” Surface and Coatings Technology, vol. 205, no. 5, pp. 1636–1641,
dc.source.bibliographicCitationK. Das, S. Bose, A. Bandyopadhyay, B. Karandikar, and B. L. Gibbins, “Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 87, no. 2, pp. 455–460,
dc.source.bibliographicCitationN. Ryter, J. Köser, W. Hoffmann et al., “Antimicrobial effects on titanium surfaces with incorporated copper,” in Proceedings of Annual Meeting of the Swiss Society for Biomedical Engineering (SSBE), vol. 39, p. 12, Bern, Switzerland,
dc.source.bibliographicCitationY. Z. Wan, G. Y. Xiong, H. Liang, S. Raman, F. He, and Y. Huang, “Modification of medical metals by ion implantation of copper,” Applied Surface Scienc, vol. 253, no. 24, pp. 9426–9429,
dc.source.bibliographicCitationG. Schmidmaier, M. Lucke, B. Wildemann, N. P. Haas, and M. Raschke, “Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review,” Injury, vol. 37, no. 2, pp. S105–S112,
dc.source.bibliographicCitationT. Kalicke, J. Schierholz, U. Schlegel et al., “Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study,” Journal of Orthopaedic Research, vol. 24, no. 8, pp. 1622–1640,
dc.source.bibliographicCitationL. G. Harris, L. Mead, E. Muller-Oberlander, and R. G. Richards, “Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces,” Journal of Biomedical Materials Research Part A, vol. 78, no. 1, pp. 50–58,
dc.source.bibliographicCitationP. Bahna, T. Dvorak, H. Hanna, A. W. Yasko, R. Hachem, and I. Raad, “Orthopaedic metal devices coated with a novel antiseptic dye for the prevention of bacterial infections,” International Journal of Antimicrobial Agents, vol. 29, no. 5, pp. 593–596,
dc.source.bibliographicCitationS. Radin and P. Ducheyne, “Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material,” Biomaterials, vol. 28, no. 9, pp. 1721–1729,
dc.source.bibliographicCitationR. O. Darouiche, M. D. Mansouri, D. Zakarevicz, A. Alsharif, and G. C. Landon, “In vivo efficacy of antimicrobial-coated devices,” Journal of Bone and Joint Surgery, vol. 89, no. 4, pp. 792–797,
dc.source.bibliographicCitationS. Zürcher, D. Wäckerlin, Y. Bethuel et al., “Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin,” Journal of the American Chemical Society, vol. 128, no. 4, pp. 1064-1065,
dc.source.bibliographicCitationJ. Y. Wach, S. Bonazzi, and K. Gademann, “Antimicrobial surfaces through natural product hybrids,” Angewandte Chemie International Edition, vol. 47, no. 37, pp. 7123–7126,
dc.source.bibliographicCitationF. Zhang, Z. L. Shi, P. H. Chua, E. T. Kang, and K. G. Neoh, “Functionalization of titanium surfaces via controlled living radical polymerization: from antibacterial surface to surface for osteoblast adhesion,” Industrial & Engineering Chemistry Research, vol. 46, no. 26, pp. 9077–9086,
dc.source.bibliographicCitationM. Kazemzadeh-Narbat, J. Kindrachuk, K. Duan, H. Jenssen, R. E. W. Hancock, and R. Wang, “Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections,” Biomaterials, vol. 31, no. 36, pp. 9519–9526,
dc.source.bibliographicCitationK. V. Holmberg, M. Abdolhosseini, Y. Li, X. Chen, S. U. Gorr, and C. Aparicio, “Bio-inspired stable antimicrobial peptide coatings for dental applications,” Acta Biomaterialia, vol. 9, no. 9, pp. 8224–8231,
dc.source.bibliographicCitationX. Chen, H. Hirt, Y. Li, S. U. Gorr, and C. Aparicio, “Antimicrobial GL13K peptide coatings killed and ruptured the wall of streptococcus gordonii and prevented formation and growth of biofilms,” PLoS One, vol. 9, no. 11, Article ID e111579,
dc.source.bibliographicCitationG. Gao, D. Lange, K. Hilpert et al., “The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides,” Biomaterials, vol. 32, no. 16, pp. 3899–3909,
Appears in Collections:Odontología

Files in This Item:
File Description SizeFormat 
Other pelaez-vargas Self Assembled Monolayers.pdfArtículo3.4 MBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.