Please use this identifier to cite or link to this item: https://repository.ucc.edu.co/handle/20.500.12494/15763
Full metadata record
DC FieldValueLanguage
dc.creatorDelgado, Daniel Ricardo-
dc.creatorCaviedes Rubio, Diego Ivan-
dc.creatorOrtiz, Claudia Patricia-
dc.creatorParra-Pava, Yarly Lizeth-
dc.creatorPeña, María Ángeles-
dc.creatorJouyban, Abolghasem-
dc.creatorMirheydari, Seyyedeh Narjes-
dc.creatorMartínez, Fleming-
dc.creatorAcree Jr, William E-
dc.date.accessioned2019-12-16T22:50:58Z-
dc.date.available2019-12-16T22:50:58Z-
dc.date.issued2019-03-19-
dc.identifier.issn00319104es
dc.identifier.urihttps://doi.org/10.1080/00319104.2019.1594227es
dc.identifier.urihttp://hdl.handle.net/20.500.12494/15763-
dc.descriptionSe informa la solubilidad en equilibrio a temperaturas de (293.15 a 313.15) K, termodinámica de disolución y solvatación preferencial de sulfadiazina (SD) en mezclas de {acetonitrilo (ACN) (1) + agua (2)}. La solubilidad de la fracción molar de SD ( x 3 ) aumenta cuando surge la temperatura y también aumenta con el aumento de la proporción de ACN. Varía de 4.81 × 10 –6 en agua limpia a 6.02 × 10 –4 en ACN puro a 298.15 K. El comportamiento de solubilidad fue correlacionado adecuadamente por Jouyban-Acree, Wilson modificado y no lineal (propuesto por Machatha et al..) los modelos y las desviaciones porcentuales medias obtenidas (MPD) son 4.1%, 2.3% y 2.3%, respectivamente. La comparación del MPD muestra que la predicción usando el modelo Jouyban-Acree es más precisa que la ecuación Jouyban-Acree-Abraham para la predicción de solubilidad de SD en {ACN (1) + agua (2)}. A partir de la variación de la solubilidad con la temperatura, se realizó el análisis termodinámico aparente de disolución en todas las mezclas y disolventes puros. Sobre la base de la inversa de Kirkwood-Buff integrales se calcularon los parámetros de solvatación preferenciales. SD está preferentemente solvatado por agua en mezclas ricas en agua (0.00 < x 1 <0.26) pero preferentemente solvatado por ACN en el intervalo (0.26 < x 1 <0.65). En mezclas ricas en ACN, el comportamiento no está bien definido.es
dc.description.abstractThe equilibrium solubility at temperatures from (293.15 to 313.15) K, dissolution thermodynamics and preferential solvation of sulphadiazine (SD) in {acetonitrile (ACN) (1) + water (2)} mixtures is reported. Mole fraction solubility of SD (x3) increases when temperature arises and also increases with the ACN proportion increasing. It varies from 4.81 × 10–6 in neat water to 6.02 × 10–4 in neat ACN at 298.15 K. Solubility behaviour was adequately correlated by Jouyban-Acree, modified Wilson and non-linear (proposed by Machatha et al.) models and the obtained mean percentage deviations (MPD) are 4.1%, 2.3% and 2.3%, respectively. The comparison of the MPD shows that the prediction using Jouyban-Acree model is more accurate than Jouyban-Acree-Abraham equation for solubility prediction of SD in {ACN (1) + water (2)}. From the variation of solubility with temperature the apparent thermodynamic analysis of dissolution was performed in all the mixtures and neat solvents. Based on the inverse Kirkwood-Buff integrals preferential solvation parameters were calculated. SD is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.26) but preferentially solvated by ACN in the interval (0.26 < x1 < 0.65). In ACN-rich mixtures the behaviour is not well defined.es
dc.description.provenanceSubmitted by Daniel Ricardo Delgado (danielr.delgado@campusucc.edu.co) on 2019-12-05T22:59:59Z No. of bitstreams: 1 Solubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf: 2358032 bytes, checksum: f10050c947c8ecd56df40b5e128a8d91 (MD5)en
dc.description.provenanceApproved for entry into archive by Mónica Gómez (monicam.gomez@ucc.edu.co) on 2019-12-16T22:50:58Z (GMT) No. of bitstreams: 1 Solubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf: 2358032 bytes, checksum: f10050c947c8ecd56df40b5e128a8d91 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-12-16T22:50:58Z (GMT). No. of bitstreams: 1 Solubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf: 2358032 bytes, checksum: f10050c947c8ecd56df40b5e128a8d91 (MD5) Previous issue date: 2019-03-19en
dc.format.extent14es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neivaes
dc.relation.ispartofPhysics and Chemistry of Liquidses
dc.relation.isversionofhttps://www.tandfonline.com/doi/abs/10.1080/00319104.2019.1594227es
dc.subjectSulfadiazinaes
dc.subjectmezclas de {acetonitrilo (1) + agua (2)}es
dc.subjectsolubilidades
dc.subjectmodelo Jouyban-Acreees
dc.subjectsolvatación preferenciales
dc.subjectintegrales Kirkwood-Buff inversas (IKBI)es
dc.subject.otherSulphadiazinees
dc.subject.other{acetonitrile (1) + water (2)} mixtureses
dc.subject.othersolubility, Jouyban-Acree modeles
dc.subject.otherpreferential solvationes
dc.subject.otherInverse Kirkwood-Buff integrals (IKBI)es
dc.titleSolubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvationes
dc.typeArtículo-
dc.rights.licenseAtribución – No comercial – Sin Derivares
dc.publisher.departmentNeivaes
dc.publisher.programIngeniería Industriales
dc.creator.maildanielr.delgado@campusucc.edu.coes
dc.identifier.bibliographicCitationDaniel Ricardo Delgado, Diego Iván Caviedes-Rubio, Claudia Patricia Ortiz, Yarly Lizeth Parra-Pava, María Ángeles Peña, Abolghasem Jouyban, Seyyedeh Narjes Mirheydari, Fleming Martínez & William E. Acree Jr (2019) Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1594227es
dc.rights.accessRightsrestrictedAccesses
dc.publisher.editorTaylor and Francises
dc.source.bibliographicCitationMarcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. [Google Scholar] Marcus Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J Mol Liq. 2008;140:61–67. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton, FL: CRC Press; 2010. [Google Scholar] Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2. [Crossref] , [Google Scholar] Avdeef A. Absorption and drug development, solubility, permeability and charge state. Hoboken, NJ: Wiley-Interscience; 2003. [Google Scholar] Marcus Y. Solvent mixtures: properties and selective solvation. New York: Marcel Dekker, Inc.; 2002. [Google Scholar] Marcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. [Google Scholar] Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001. [Google Scholar] Gelone S, O’Donell JA. Anti-infectives. In: editor, Gennaro AR. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005;1630–1633. [Google Scholar] Martínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Solution Chem. 2001;30:909–923. [Crossref], [Web of Science ®] , [Google Scholar] Bustamante P, Escalera B, Martin A, et al. A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol. 1993;45:253–257. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Reillo A, Escalera B, Selles E. Prediction of sulfanilamide solubility in dioxane–water mixtures. Pharmazie. 1993;48:904–907. [Web of Science ®] , [Google Scholar] Reillo A, Bustamante P, Escalera B, et al. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Dev Ind Pharm. 1995;21:2073–2084. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Reillo A, Cordoba M, Escalera B, et al. Prediction of sulfamethizole solubility in dioxane–water mixtures. Pharmazie. 1995;50:472–475. [Web of Science ®] , [Google Scholar] Delgado DR, Romdhani A, Martínez F. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat Am J Pharm. 2011;30:2024–2030. [Web of Science ®] , [Google Scholar] Delgado DR, Romdhani A, Martínez F. Solubility of sulfamethizole in some propylene glycol+ water mixtures at several temperatures. Fluid Phase Equilib. 2012;322:113–119. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Rodríguez GA, Martínez F. Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J Mol Liq. 2013;177:156–161. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J Mol Liq. 2013;187:99–105. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 2013;360:88–96. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 2014;379:128–138. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J Solution Chem. 2014;43:836–852. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib. 2015;397:26–36. [Crossref], [Web of Science ®] , [Google Scholar] Muñoz MM, Delgado DR, Peña MA, et al. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;204:132–136. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J Solution Chem. 2015;44:360–377. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. J Mol Liq. 2016;216:239–245. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Almanza OA, Martínez F, et al. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J Chem Thermodyn. 2016;97:264–276. [Crossref], [Web of Science ®] , [Google Scholar] Cárdenas ZJ, Jiménez DM, Almanza OA, et al. Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J Solution Chem. 2016;45:1479–1503. [Crossref], [Web of Science ®] , [Google Scholar] Cox BG, Natarajan R, Waghorne WE. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J Chem Soc Faraday Trans 1. 1979;75:86–95. [Crossref] , [Google Scholar] Barbosa J, Barrón D, Bergés R, et al. Preferential solvation in acetonitrile–water mixtures: relationship between solvatochromic parameters and pK values of carboxylic acids. J Chem Soc Faraday Trans. 1997;93:1915–1920. [Crossref] , [Google Scholar] Gekko K, Ohmae E, Kameyama K, et al. Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998;1387:195–205. [Crossref], [PubMed] , [Google Scholar] Shin DN, Wijnen JW, Engberts JBFN, et al. On the origin of microheterogeneity: mass spectrometric studies of acetonitrile-water and dimethyl sulfoxide-water binary mixtures (Part 2). J Phys Chem B. 2002;106:6014–6020. [Crossref], [Web of Science ®] , [Google Scholar] Wang G, Wang Y, Ma Y, et al. Determination and correlation of cefuroxime acid solubility in (acetonitrile + water) mixtures. J Chem Thermodyn. 2014;77:144–150. [Crossref], [Web of Science ®] , [Google Scholar] Polatoğlu İ, Yürekli Y, Baştürk SB. Estimating solubility of parathion in organic solvents. AKU J Sci Eng. 2015;15(037101):1–5. [Crossref] , [Google Scholar] Yang Y, Yang P, Du S, et al. Solubility determination and thermodynamic modelling of allisartan isoproxil in different binary solvent mixtures from T = (278.15 to 313.15) K and mixing properties of solutions. J Chem Thermodyn. 2016;103:432–445. [Crossref], [Web of Science ®] , [Google Scholar] Dali I, Aydi A, Alberto CC, et al. Correlation and semi-empirical modeling of solubility of gallic acid in different pure solvents and in binary solvent mixtures of propan-1-ol + water, propan-2-ol + water and acetonitrile + water from (293.2 to 318.2) K. J Mol Liq. 2016;222:503–519. [Crossref], [Web of Science ®] , [Google Scholar] Li X, Cong Y, Li W, et al. Thermodynamic modelling of solubility and preferential solvation for ribavirin (II) in co-solvent mixtures of (methanol, n-propanol, acetonitrile or 1,4-dioxane) + water. J Chem Thermodyn. 2017;115:74–83. [Crossref], [Web of Science ®] , [Google Scholar] Marcus Y. The properties of solvents. Chichester: John Wiley & Sons; 1998. [Google Scholar] Marcus Y. The structure of and interactions in binary acetonitrile + water mixtures. J Phys Org Chem. 2012;25:1072–1085. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J Mol Liq. 2014;193:152–159. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys Chem Liq. 2015;53:293–306. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F, et al. Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures. Pharm Sci (Tabriz). 2016;22:143–152. [Crossref] , [Google Scholar] Cárdenas ZJ, Jiménez DM, Delgado DR, et al. Extended Hildebrand solubility approach applied to some sulphonamides in propylene glycol + water mixtures. Phys Chem Liq. 2015;53:763–775. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to some structurally related sulfonamides in ethanol + water mixtures. Rev Colomb Quím. 2016;45:34–43. [Crossref] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to some sulphapyrimidines in some {methanol (1) + water (2)} mixtures. Phys Chem Liq. 2018;56:176–188. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Phys Chem Liq. 2019;57:388-400. [Google Scholar] Martin A, Bustamante P, Chun AHC. Physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia, PA: Lea & Febiger; 1993. [Google Scholar] Barton AFM. Handbook of solubility parameters and other cohesion parameters. 2nd ed. New York: CRC Press; 1991. [Google Scholar] Connors KA. Thermodynamics of pharmaceutical systems: an introduction for students of pharmacy. Hoboken, NJ: Wiley-Interscience; 2002. [Crossref] , [Google Scholar] Kristl A, Vesnaver G. Thermodynamic investigation of the effect of 1-octanol-water mutual miscibility on the partitioning and solubility of some guanine derivatives. J Chem Soc Faraday Trans. 1995;91:995–998. [Crossref] , [Google Scholar] Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharmaceut Sci. 2008;11:32–58. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Machatha SG, Bustamante P, Yalkowsky SH. Deviation from linearity of drug solubility in ethanol/water mixtures. Int J Pharm. 2004;283:83–88. [Crossref], [PubMed] , [Google Scholar] Jouyban-Gharamaleki A, Valaee L, Barzegar-Jalali M, et al. Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures. Int J Pharm. 1999;177:93–101. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A. The modified Wilson model and predicting drug solubility in water-cosolvent mixtures. Chem Pharm Bull (Tokyo). 1998;46:1058–1061. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A, Acree WE Jr. Comparison of models for describing multiple peaks in solubility profiles. Int J Pharm. 1998;167:177–182. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A, Khoubnasabjafari M, Chan HK, et al. Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model. Pharmazie. 2006;61:789–792. [PubMed], [Web of Science ®] , [Google Scholar] Jouyban A, Chew NYK, Chan HK, et al. Solubility predicton of salicylic acid in water-ethanol-propylene glycol mixtures using the Jouyban-Acree model. Pharmazie. 2006;61:417–419. [PubMed], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A, Dastmalchi S, Chan HK, et al. Solubility prediction for furosemide in watercosolvent mixtures using the minimum number of experiments. Drug Dev Ind Pharm. 2001;27:577–583. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Jouyban A, Chan HK, Chew NYK, et al. Solubility prediction of paracetamol in binary and ternary solvent mixtures using Jouyban-Acree model. Chem Pharm Bull (Tokyo). 2006;54:428–431. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Jouyban A, Soltanpour S, Soltani S, et al. Prediction of drug solubility in mixed solvents using computed Abraham parameters. J Mol Liq. 2009;146:82–88. [Crossref], [Web of Science ®] , [Google Scholar] Krug RR, Hunter WG, Grieger RA. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J Phys Chem. 1976;80:2335–2341. [Crossref], [Web of Science ®] , [Google Scholar] Krug RR, Hunter WG, Grieger RA. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J Phys Chem. 1976;80:2341–2351. [Crossref], [Web of Science ®] , [Google Scholar] Perlovich GL, Kurkov SV, Kinchin AN, et al. Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur J Pharm Biopharm. 2004;57:411–420. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Romero S, Reillo A, Escalera B, et al. The behaviour of paracetamol in mixtures of aprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem Pharm Bull (Tokyo). 1996;44:1061–1066. [Crossref], [Web of Science ®] , [Google Scholar] Mora CP, Martínez F. Thermodynamic quantities relative to solution processes of naproxen in aqueous media at pH 1.2 and7.4. Phys Chem Liq. 2006;44:585–596. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Bustamante P, Romero S, Peña A, et al. Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water. J Pharm Sci. 1998;87:1590–1596. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Martínez F, Peña MA, Bustamante P. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib. 2011;308:98–106. [Crossref], [Web of Science ®] , [Google Scholar] Ruidiaz MA, Delgado DR, Martínez F, et al. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010;299:259–265. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A, Acree WE Jr, Martínez F. Modelling the solubility and preferential solvation of gallic acid in cosolvent + water mixtures. J Mol Liq. 2016;224:502–506. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures. Ind Eng Chem Res. 2014;53:16550–16558. [Crossref], [Web of Science ®] , [Google Scholar] Martínez F, Gómez A. Thermodynamics of partitioning of some sulfonamides in 1-octanol/buffer and liposome systems. J Phys Org Chem. 2002;15:874–880. [Crossref], [Web of Science ®] , [Google Scholar]es
dc.source.bibliographicCitationMarcus Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J Mol Liq. 2008;140:61–67.es
dc.source.bibliographicCitationJouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton, FL: CRC Press; 2010.es
dc.source.bibliographicCitationMartinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2.es
dc.source.bibliographicCitationAvdeef A. Absorption and drug development, solubility, permeability and charge state. Hoboken, NJ: WileyInterscience; 2003.es
dc.source.bibliographicCitationMarcus Y. Solvent mixtures: properties and selective solvation. New York: Marcel Dekker, Inc.; 2002.es
dc.source.bibliographicCitationMarcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537.es
dc.source.bibliographicCitationBudavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001.es
dc.source.bibliographicCitation] Gelone S, O’Donell JA. Anti-infectives. In: editor, Gennaro AR. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005;1630–1633.es
dc.source.bibliographicCitationMartínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Solution Chem. 2001;30:909–923es
dc.source.bibliographicCitationBustamante P, Escalera B, Martin A, et al. A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol. 1993;45:253–257.es
dc.source.bibliographicCitationReillo A, Escalera B, Selles E. Prediction of sulfanilamide solubility in dioxane–water mixtures. Pharmazie. 1993;48:904–907.es
dc.source.bibliographicCitationReillo A, Bustamante P, Escalera B, et al. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Dev Ind Pharm. 1995;21:2073–2084es
dc.source.bibliographicCitationReillo A, Cordoba M, Escalera B, et al. Prediction of sulfamethizole solubility in dioxane–water mixtures. Pharmazie. 1995;50:472–475es
dc.source.bibliographicCitationDelgado DR, Romdhani A, Martínez F. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat Am J Pharm. 2011;30:2024–2030.es
dc.source.bibliographicCitationDelgado DR, Romdhani A, Martínez F. Solubility of sulfamethizole in some propylene glycol+ water mixtures at several temperatures. Fluid Phase Equilib. 2012;322:113–119.es
dc.source.bibliographicCitationDelgado DR, Rodríguez GA, Martínez F. Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J Mol Liq. 2013;177:156–161es
dc.source.bibliographicCitationDelgado DR, Martínez F. Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J Mol Liq. 2013;187:99–105es
dc.source.bibliographicCitationDelgado DR, Martínez F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 2013;360:88–96.es
dc.source.bibliographicCitationDelgado DR, Martínez F. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 2014;379:128–138es
dc.source.bibliographicCitationDelgado DR, Martínez F. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J Solution Chem. 2014;43:836–852es
dc.source.bibliographicCitationJiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib. 2015;397:26–36.es
dc.source.bibliographicCitationMuñoz MM, Delgado DR, Peña MA, et al. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;204:132–136.es
dc.source.bibliographicCitationDelgado DR, Martínez F. Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J Solution Chem. 2015;44:360–377.es
dc.source.bibliographicCitationJiménez DM, Cárdenas ZJ, Martínez F. Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. J Mol Liq. 2016;216:239–245.es
dc.source.bibliographicCitationDelgado DR, Almanza OA, Martínez F, et al. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J Chem Thermodyn. 2016;97:264–276.es
dc.source.bibliographicCitationCárdenas ZJ, Jiménez DM, Almanza OA, et al. Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J Solution Chem. 2016;45:1479–1503.es
dc.source.bibliographicCitationCox BG, Natarajan R, Waghorne WE. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J Chem Soc Faraday Trans 1. 1979;75:86–95.es
dc.source.bibliographicCitationBarbosa J, Barrón D, Bergés R, et al. Preferential solvation in acetonitrile–water mixtures: relationship between solvatochromic parameters and pK values of carboxylic acids. J Chem Soc Faraday Trans. 1997;93:1915–1920es
dc.source.bibliographicCitationGekko K, Ohmae E, Kameyama K, et al. Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998;1387:195–205.es
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116es
dc.description.orcidhttps://orcid.org/0000-0002-4835-9739es
dc.description.gruplachttps://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151es
dc.description.googlescholarhttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_workses
Appears in Collections:Ingeniería Industrial

Files in This Item:
File Description SizeFormat 
Solubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf
  Restricted Access
Artículo Científico2.3 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.