Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12494/14466
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHenao Zambrano, Juan Carlos-
dc.creatorRueda Camero, José Alejandro-
dc.date.accessioned2019-10-10T17:35:11Z-
dc.date.available2019-10-10T17:35:11Z-
dc.date.issued2019-10-09-
dc.identifier.urihttp://hdl.handle.net/20.500.12494/14466-
dc.descriptionLos aceites esenciales son una alternativa para sustituir el uso de aditivos antibióticos en dietas para rumiantes por su efecto sobre la fermentación ruminal, mejorando la digestibilidad y disminuyendo perdidas energéticas en forma de metano. El objetivo del presente estudio fue evaluar la inclusión de una mezcla de aceites esenciales (AE) de ajo (Allium sativum) y orégano (Origanum vulgare) en partes iguales sobre la digestibilidad in vivo en ovinos de carne. Fueron utilizados doce ovinos africanos de pelo corto machos enteros, los cuales fueron distribuidos en un diseño de cuadrado latino 4X4 con cuatro tratamientos: 1. Control – sin adición de aditivos, Tratamiento 2. 0,5 ml, Tratamiento 3. 0,75 ml y Tratamiento 4. 1 ml de (AE) animal/día y tres repeticiones (tres animales por cada unidad experimental). Los periodos experimentales fueron de 20 días, 16 días destinados a adaptación y 4 días para colectas en jaulas metabólicas. La dieta suministrada fue Forraje: Concentrado en proporción 60:40% respectivamente con base en la materia seca, usando como alimento voluminoso el ensilaje de maíz y como alimento concentrado una mezcla balanceada de maíz, torta de soya y suplemento mineral. La digestibilidad aparente se estimó de acuerdo con la fórmula: [(Ingestión – Excreción) / Ingestión x 100]. Los Nutrientes digestibles totales se estimaron con la fórmula: (NDT) (%) = PC digestible + FDN digestible + CNF digestibles + (EE digestible x 2,25). El efecto de las inclusiones fue estudiado por regresión polinomial y el efecto entre los tratamientos fue evaluado por comparación de las medias por medio del test de Dunnett con un 5% de probabilidad mediante el programa estadístico Minitab 17™ (2014). La inclusión de AE tuvo en efecto lineal positivo (P<0,05) en la ingestión de materia seca (MS) y fibra en detergente neutro (FDN) sobre los tratamientos. Igualmente, la ingestión de PC fue influenciada por los AE (P<0,05). En la digestibilidad de FDN se encontró un efecto cuadrático negativo (P=0,0444) en niveles por encima de 0,5 ml de AE/animal/día. Entre tratamientos igualmente, la digestibilidad de la MS y FDN fue mayor (73,75 y 58,28% respectivamente) en el tratamiento con 0,5 ml de AE/animal/día. Similarmente, en el NDT la inclusión de 0,5 ml de AE/animal/día fue mayor (70,73%) en comparación con los demás tratamientos (P<0,05). La inclusión de AE de ajo y orégano a bajas dosis y en mezcla presento mayor efectividad para mejorar la degradación de la fibra y la digestibilidad aparente total en el presente experimento.es
dc.description.abstractEssential oils are an alternative to replace the use of antibiotic additives in ruminant diets for their effect on ruminal fermentation, improving digestibility and decreasing energy losses in the form of methane. The objective of this study was to evaluate the inclusion of a mixture of essential oils (AE) of garlic (Allium sativum) and oregano (Origanum vulgare) in equal parts on in vivo digestibility in meat sheep. Twelve whole male short-haired African sheep were used, which were distributed in a 4X4 Latin square design with four treatments: 1. Control - no additives added, Treatment 2. 0.5 ml, Treatment 3. 0.75 ml and Treatment 4. 1 ml of (AE) animal / day and three repetitions (three animals for each experimental unit). The experimental periods were 20 days, 16 days for adaptation and 4 days for collections in metabolic cages. The diet provided was Fodder: Concentrated in proportion 60: 40% respectively based on dry matter, using corn silage as a bulky food and as a concentrated food a balanced mixture of corn, soy cake and mineral supplement. The apparent digestibility was estimated according to the formula: [(Ingestion - Excretion) / Ingestion x 100]. Total digestible nutrients were estimated with the formula: (NDT) (%) = digestible PC + digestible NDF + digestible CNF + (digestible EE x 2.25). The effect of the inclusions was studied by polynomial regression and the effect between the treatments was evaluated by comparison of the means by means of the Dunnett test with a 5% probability by means of the statistical program Minitab 17 ™ (2014). The inclusion of AE had a positive linear effect (P <0.05) in the ingestion of dry matter (DM) and fiber in neutral detergent (NDF) on the treatments. Similarly, PC ingestion was influenced by AE (P <0.05). In the digestibility of NDF a negative quadratic effect (P = 0.0444) was found at levels above 0.5 ml of AE / animal / day. Among treatments, the digestibility of DM and NDF was higher (73.75 and 58.28% respectively) in the treatment with 0.5 ml of AE / animal / day. Similarly, in the NDT the inclusion of 0.5 ml of AE / animal / day was higher (70.73%) compared to the other treatments (P <0.05). The inclusion of AE of garlic and oregano at low doses and in mixture was more effective in improving fiber degradation and total apparent digestibility in the present experiment.es
dc.format.extent34es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibaguées
dc.subjectMetanoes
dc.subjectResistencia microbianaes
dc.subjectOvinoses
dc.subjectReemplazoes
dc.subject.classificationTG 2019 MVZ 14466es
dc.subject.otherMethanees
dc.subject.otherMicrobial resistancees
dc.subject.otherSheepes
dc.subject.otherReplacementes
dc.titleEvaluación de la inclusión de aceites esenciales de ajo (Allium sativum) y orégano (Origanum vulgare) en dietas para rumiantes como aditivo sobre la digestibilidad.es
dc.rights.licenseAtribución – No comercial – Sin Derivares
dc.publisher.departmentIbaguées
dc.publisher.programMedicina veterinaria y zootecniaes
dc.type.spaTrabajos de grado - Pregradoes
dc.description.tableOfContents1. Resumen. -- 2. Abstract -- 3. Introducción. -- 4. Objetivo general. -- 4.1 Objetivo específico. -- 5. Marco teórico y antecedentes. -- 5.1 Aceites esenciales. -- 5.2 Componentes de los aceites. -- 5.3 Mecanismo de acción de los aceites esenciales. -- 5.4 Efectos de los aceites esenciales sobre la digestibilidad. -- 5.5 Importancia de los aceites esenciales. -- 5.6 Aceite de ajo (Allium sativum). -- 5.7 Aceite esencial de orégano (Oreganum vulgare). -- 6. Materiales y métodos. -- 6.1 Animales y dieta. -- 6.2 Digestibilidad y diseño. -- 6.3 Análisis Proximal. -- 7. Resultados. -- 8. Discusión. -- 9. Conclusión. -- 10. Referencias bibliográficas. --es
dc.creator.mailjose.ruedac@campusucc.edu.coes
dc.identifier.bibliographicCitationRueda Camero, J. A. (2019). Evaluación de la inclusión de aceites esenciales de ajo (Allium sativum) y orégano (Origanum vulgare) en dietas para rumiantes como aditivo sobre la digestibilidad. (Tesis de pregrado). Recuperado de: http://hdl.handle.net/20.500.12494/14466es
dc.rights.accessRightsopenAccesses
dc.source.bibliographicCitationAcamovic T. and Brooker J. D. 2005. Biochemistry of plant secondary metabolites and their effects in animals. The Proceedings of the Nutrition Society. 64:403–412es
dc.source.bibliographicCitationAmadio, C., Medina, R., Dediol, C., Zimmermann, M & Miralles, S. Aceite esencial de orégano: un potencial aditivo alimentario. Rev. FCA UNCUYO. ISSN 0370-4661. Tomo 43. N° 1. Año 2011. 237-245.es
dc.source.bibliographicCitationAndrade, E., Martínez, A., Castelán, O., Ríos, J., Pacheco, Y., & Estrada, J. Producción de metano utilizando plantas taniferas como substrato en fermentación ruminal in vitro y efecto de extractos fenólicos en la microflora ruminal. Tropical and Subtropical Agroecosystems, 15 (2012): 301 - 312es
dc.source.bibliographicCitationBakkali F., Averbeck S., Averbeck D. and Idaomar M. 2008. Biological effects of essential oils - A review. Food and Chemical Toxicology. 46:446–475.es
dc.source.bibliographicCitationBenchaar, C., Calsamiglia, S., Chaves, A. V., Fraser, G. R., Colombatto, D., McAllister, T. A., & Beauchemin, K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1), 209-228.es
dc.source.bibliographicCitationBenchaar, C., & Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166–167, 338–355. https://doi.org/10.1016/j.anifeedsci.2011.04.024es
dc.source.bibliographicCitationBender-Bojalil D, Bárcenas-Pozos M E. El ajo y sus aplicaciones en la conservación de los alimentos. Revista Temas Selectos Ingeniera en Alimentos. 2013; 7(1): 25-36.es
dc.source.bibliographicCitationBeauchemin, K., McGinn, S., & McAllister, T. (2009). Dietary mitigation of enteric methane from cattle. Rev. Perspect Agric Vet Sci Nutr Nat Resour, 2009;4:1-18.es
dc.source.bibliographicCitationBurt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology,94(3), 223-253.es
dc.source.bibliographicCitationBusquet, M., Calsamiglia, S., Ferret, A., Cardozo, P. W., & Kamel, C. (2005). Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. Journal of Dairy Science, 88(7), 2508-2516.es
dc.source.bibliographicCitationBusquet, M; Calsamiglia, S; Ferret, A & Kamel, C. (2006). Plant Extracts Affect In Vitro Rumen Microbial Fermentation. Journal of Dairy Science Vol. 89 No. 2, 2006.es
dc.source.bibliographicCitationCalsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., & Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of dairy science, 90(6), 2580-2595.es
dc.source.bibliographicCitationCardozo, P. W., S. Calsamiglia, A. Ferret, and C. Kamel. 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 83:2572–2579.es
dc.source.bibliographicCitationCarson, C. F., Mee, B. J., & Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents and chemotherapy, 46(6), 1914-1920.es
dc.source.bibliographicCitationCarson, C. F., Mee, B. J., & Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents and chemotherapy, 46(6), 1914-1920.es
dc.source.bibliographicCitationCastanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 2007; 86:2466-2471es
dc.source.bibliographicCitationChekki, R., Snoussi, A., Hamrouni, I & Bouzouita, N. Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterranean Journal of Chemistry 2014, 3(4), 947-956es
dc.source.bibliographicCitationChao, S. C., Young, D. G., & Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 12(5), 639-649.es
dc.source.bibliographicCitationChaves, A. V., Stanford, K., Dugan, M. E. R., Gibson, L. L., McAllister, T. A., Van Herk, F., & Benchaar, C. (2008). Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livestock Science, 117(2-3), 215–224. doi: 10.1016/j.livsci.2007.12.013es
dc.source.bibliographicCitationCobellis, G., Petrozzi, A., Forte, C., Acuti, G., Orrù, M., Marcotullio, M., Aquino, A., Nicolini, A., Mazza, V., & Trabalza-Marinucci, M. Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems. Sustainability 2015, 7, 12856-12869; doi:10.3390/su70912856es
dc.source.bibliographicCitationCobellis, G., Trabalza-marinucci, M., & Yu, Z. (2016). Science of the Total Environment Critical evaluation of essential oils as rumen modi fi ers in ruminant nutrition : A review. Science of the Total Environment, 546, 556–568. https://doi.org/10.1016/j.scitotenv.2015.12.103es
dc.source.bibliographicCitationDorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000;(88):308-316.es
dc.source.bibliographicCitationGiannenas I, Skoufos J, Giannakopoulos C, Wiemann M, Gortzi O, Lalas S, Kyriazakis I (2011) Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci. 94: 5569-5577es
dc.source.bibliographicCitationHart, K., Yañez Ruiz, D., Duvel, S., McEwan, N., & Newbold. (2008). Plant extracts to manipulate rumen fermentation. Animal Feed Science Tech, (147):8-35.es
dc.source.bibliographicCitationHelander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., ... & von Wright, A. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of agricultural and food chemistry, 46(9), 3590-3595.es
dc.source.bibliographicCitationHristov, A. L., Cassidy, C., Heyler, T., Tekippe, J., Varga., G., Corl, B., & Brandt, R. C. (2013). Effect of Origanum vulgare L. leaves on rumen fermentation production, and milk fatty acid composition in lactating dairy cows. J. Dairy. Science, 96 :1189–1202.es
dc.source.bibliographicCitationJouany, J. P., & Morgavi, D. P. (2007). Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production.es
dc.source.bibliographicCitationKintzios, E. Orégano. 2002. The genera Origanum and Lippia. Taylor & Francis. 267p.es
dc.source.bibliographicCitationKhaled Rahman, Bioactive foods in promoting health: Chapter 16 - Garlic and Heart Health, ed. By Elsevier, 2010, 235-244.es
dc.source.bibliographicCitationKlevenhusen, F; Zeitz, J;Duval, S; Kreuzer, M & Soliva, C. (2011). Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Animal Feed Science and Technology 166– 167 (2011) 356– 363es
dc.source.bibliographicCitationKlevenhusen, F., Zeitz, J. O., Duval, S., Kreuzer, M., & Soliva, C. R. (2011). Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Animal Feed Science and Technology, 166–167, 356–363. https://doi.org/10.1016/j.anifeedsci.2011.04.071es
dc.source.bibliographicCitationMellor, S. (2000). Alternatives to antibiotics. Pig Progress, 16(1), 18-21es
dc.source.bibliographicCitationMertens, D. R., & Ely, L. O. (1979). A dynamic model of fiber digestion and passage in the ruminant for evaluating forage quality. Journal of Animal Science, 49(4), 1085-1095.es
dc.source.bibliographicCitationMohammed, N., Ajisaka, N., Lila, Z. A., Hara, K., Mikuni, K., Hara, K., ... & Itabashi, H. (2004). Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. Journal of animal science,82(6), 1839-1846.es
dc.source.bibliographicCitationMoreno JCG, Osollo LME, Prieto MC, Janacua HV. (2009) Efecto dietético de los aceites esenciales de origanum vulgare sobre el comportamiento productivo de ovinos. En Mem. XIX Reunión Internacional sobre Producción de Carne y Leche en Climas Cálidos. pp. 213-216.es
dc.source.bibliographicCitationNational Research Council (US). Committee on Nutrient Requirements of Small Ruminants, National Research Council, Committee on the Nutrient Requirements of Small Ruminants, Board on Agriculture, Division on Earth, & Life Studies. (2007). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelidses
dc.source.bibliographicCitationOba, M.;Wertz-Lutz, A.E. Ruminant nutrition symposium: Acidosis: New insights into the persistent problem. Journal of Animal Science, v.89, n.4, p.1090-1091, 2011.es
dc.source.bibliographicCitationOh, J., Harper, M., & Hristov, A. N. (2019). Effects of lowering crude protein supply alone or in a combination with essential oils on productivity, rumen function and nutrient utilization in dairy cows. Animal, 1–9. https://doi.org/10.1017/S1751731119001083es
dc.source.bibliographicCitationPatra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Anton Leeuwe Int J G 2009;(96):363-375.es
dc.source.bibliographicCitationPatra, A. K., & Yu, Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78(12), 4271–4280. https://doi.org/10.1128/AEM.00309-12es
dc.source.bibliographicCitationRanga Niroshan Appuhamy J. A. D., Strathe A. B., Jayasundara S., Wagner-Riddle C., Dijkstra J., France J. and Kebreab E. 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. Journal of Dairy Science. 96:5161–5173.es
dc.source.bibliographicCitationRobinson T. P, Bu D. P, Carrique-Mas J., Fèvre E. M., Gilbert M., Grace D., Hay S. I., Jiwakanon J., Kakkar M., Kariuki S., Laxminarayan R., Lubroth J., Magnusson U., Thi Ngoc P., Van Boeckel T. P. and Woolhouse M. E. J. 2017. Antibiotic resistance: mitigation opportunities in livestock sector development. Animal. 11:1–3.es
dc.source.bibliographicCitationRussell, J. B., & Houlihan, A. J. (2003). Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews, 27(1), 65-74.es
dc.source.bibliographicCitationSangwan, N.S., Farooqi, A.H.A., Shabih, F., Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant Growth Regul., 34(1), 3–21. https://doi.org/10.1023/A:1013386921596es
dc.source.bibliographicCitationSimitzis, P. E., Deligeorgis, S. G., Bizelis, J. A., Dardamani, A., Theodosiou, I., & Fegeros, K. (2008). Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Science, 79(2), 217–223.doi:10.1016/j.meatsci.2007.09.005es
dc.source.bibliographicCitationSolorzano F, Miranda MG. 2011. Essential oils from aromatic herbs as a antimicrobial agents. Current Opinion in Biotechnology, 23: 1-6.es
dc.source.bibliographicCitationTager LR, Krause KM (2011) Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J. Dairy Sci. 94: 2455-2464.es
dc.source.bibliographicCitationWink M, Schimmer O. Modes of action of defensive secondary metabolites. In: Wink M editor. Functions of plant secondary metabolites and their exploitation in biotechnology. Sheffield UK: Sheffield Academic Press; 1999;17-112.es
dc.source.bibliographicCitationYang, W., Ametaj, B., Benchaar, C., & Beauchemin, K. (2010). Dose response to cinnamaldehyde supplementation in growing beef heifers: Ruminal and intestinal digestion. Journal Animal Science, (88):680-688.es
dc.source.bibliographicCitationYang, W., Benchaar, C., Ametaj, B., Chaves, A., He, H and McAllister, T. Effects of Garlic and Juniper Berry Essential Oils on Ruminal Fermentation and on the Site and Extent of Digestion in Lactating Cows. Journal of Dairy Science Vol. 90 No. 12, 2007.es
dc.source.bibliographicCitationZhang KY, Yan F, Keen CA, Waldroup PW. Use of essential oils and organic acids in diets for broiler chickens. Int J Poult Sci 2005; 4:612-619.es
Appears in Collections:Medicina Veterinaria Zootecnia



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.