ESTUDIO DE MEZCLAS ASFÁLTICAS RECICLADAS (RECLAIMED ASPHALT PAVEMENT) MODIFICADAS CON DIFERENTES PORCENTAJES DE WEO (WASTE ENGINE OIL)

JINETD LORENA MARTINEZ REINOSO
Cód. 332212
ANDREA GERALDINE ROJAS CUBIDES
Cód. 375861
KEVIN EDBER BERNAL YEPES
Cód. 325948

UNIVERSIDAD COOPERATIVA DE COLOMBIA FACULTAD DE INGENIERÍAS PROGRAMA INGENIERÍA CIVIL IBAGUÉ – TOLIMA 2018

ESTUDIO DE MEZCLAS ASFÁLTICAS RECICLADOS (RECLAIMED ASPHALT PAVIMENT) CON MODIFICACION EN EL PORCENTAJE DE WEO (WASTE ENGINE OIL)

JINETD LORENA MARTINEZ REINOSO
Cód. 332212
ANDREA GERALDINE ROJAS CUBIDES
Cód. 375861
KEVIN EDBER BERNAL YEPES
Cód. 325948

Informe final del seminario profundización reciclaje de pavimentos. Presentado como requisito parcial para obtener el título de ingenieros civiles.

Directores

NORMA PATRICIA GUTIERREZ MURILLO Ingeniera industrial M. Sc.

PEDRO JULIAN GALLEGO QUINTANA Ingeniero civil Phd

UNIVERSIDAD COOPERATIVA DE COLOMBIA FACULTAD DE INGENIERÍAS PROGRAMA INGENIERÍA CIVIL

IBAGUÉ – TOLIMA 2018

	Nota de aceptación:
=	
	Firma del presidente del jurado
	Firma del jurado
	a doi jailado
	Firma del jurado

AGRADECIMIENTOS

El autor (es) expresan sus agradecimientos a:

Sus padres por el capital necesario para la ejecución del proyecto.

Al director del proyecto Ingeniero Pedro Julián Gallego Quintana por su asesoría, conocimientos y constante apoyo en el proceso.

A la directora Ingeniera Norma patricia Gutiérrez Murillo por su seguimiento y asesoría durante el proyecto.

Al ingeniero Julián Andres Pulecio Díaz, por su acompañamiento y asesoría durante el proyecto.

Al laboratorio de pavimentos de la Universidad Cooperativa de Colombia sede lbagué por prestar sus servicios para la realización de los ensayos pertinentes

DEDICATORIA

A Dios por brindarnos sabiduría, fortaleza y perseverancia para culminar con éxito la carrera de ingeniería civil y así proyectarnos como excelentes profesionales. A nuestros padres por su incondicional apoyo, por el sacrificio y la confianza que colocaron en nosotros a lo largo de este proceso, a los docentes que hicieron parte de nuestra formación, que nos brindaron acompañamiento y gran parte de sus conocimientos; por último, a nuestras familias y amigos quienes brindaron su apoyo y ánimo constante.

CONTENIDO

1. INTRODUCCION	
2. JUSTIFICACIÓN	
3. ANTECEDENTES	
4. OBJETIVOS	
4.1 OBJETIVO GENERAL	. 18
4.2 OBJETIVOS ESPECIFIOS	
5. ESTADO DEL ARTE	. 19
6. MARCO DE REFERENCIA	
6.1 MARCO TEORICO	
7. MARCO CONCEPTUAL	
8. MATERIALES E INSTRUMENTOS	
8.1 MATERIALES	. 27
9. METODOLOGIA EXPERIMENTAL	
9.1 ENSAYOS REALIZADOS:	
9.2 CARACTERIZACION AGREGADOS VIRGENES	
INVIAS 123- 13 (Determinación de los tamaños de las partículas de los suelos).	
9.3CARACTERIZACION DEL	RAF
9.4 CARACTERIZACION DE WEO	
10. ANALISIS Y RESULTADOS	
10.1 Caracterización de los agregados vírgenes	
10.2 Caracterización de los agregados vírgenes en el ensayo I.N.V.E – 218	3 - 13
(Resistencia al desgaste de los agregados de tamaños menores de 37.5 mm	
por medio de la máquina de los ángeles)	
10.3 Densidad relativa (gravedad específica) y absorción del agregado fino	
10.4 Densidad relativa (gravedad especifica) y absorción del agregado grueso	
10.5 CARACTERIZACIÓN DE RAP	. 45

pág.

10.6 CARACTERIZACION DE MEZCLAS FINALES (PROPIEDAD MECÁNICAS)	
10.6.1 Vacíos con aire	
10.6.2 Estabilidad y Flujo	51
10.7 SUSCEPTIBILIDAD AL AGUA UTILIZANDO LA PRUEBA	
INDIRECTA11.CONCLUSIONES	
12. RECOMENDACIONES	
13. BIBLIOGRAFIA	
14. ANEXOS	17
LISTA DE TABLAS	
	D./
	Pág.
Tabla 1 Granulometría y clasificación	23
Tabla 2 Granulometria admisible para el reciclaje de pavimentos	
Tabla 3 Granulometria de ensayos A, B ,C o D	31
Tabla 4 Granulometria de las muestras de ensayo	32
Tabla 5 Datos del tratamiento control	34
Tabla 6 Tratamiento 7% de WEO	34
Tabla 7 Tratamiento 7,5% de WEO	35
Tabla 8 Granulometria de los agregados virgenes	37
Tabla 9 Tamizado del agregado virgen	38
Tabla 10 Granulometria del RAP	46
Tabla 11 Vacios con aire	50

LISTA DE FOTOGRAFIAS

	Pág.
Fotografía 1 Juego de tamices	29
Fotografia 2 Lavado de material para ensayo	33
Fotografia 3 Briquetas	34
Fotografia 4 Briquetas sumergidas	35
Fotografia 5 Mezcla de agregados	3
Fotografia 6 Toma de temperatura a briquetas	3
Fotografia 7 Ensayo MARSHALL	3

LISTA DE ILUSTRACIÓN

	Pág.
llustración 1 Curva granulométrica – Agregados vírgenes - RAP	47
Ilustración 2 Porcentaje de vacíos VS porcentaje de WEO	51
Ilustración 3 Estabilidad MARSHALL	52
Ilustración 4 Grafico del flujo	54
llustración 5 Relación estabilidad flujo	3
llustración 6 Tracción indirecta (Húmeda y seca) y Relación tracción indirecta (l para mezclas con RAP más WEO	,
Ilustración 7 Relación de resistencia a tensión indirecta (RRT)	5

LISTA DE ANEXOS

	Pág.
Anexo A Primera estructura- Tratamiento 7%	17
Anexo B Primera estructura - Tratamiento 7.5%	18
Anexo C Primera estructura - Tratamiento control	19
Anexo D Segunda estructura - Tratamiento 7%	19
Anexo E Segunda estructura - Tratamiento 7.5%	20
Anexo F Segunda estructura - Tratamiento control	20
Anexo G Tercera estructura - Tratamiento 7%	21
Anexo H Tercera estructura - Tratamiento 7.5 %	22
Anexo I Tercera estructura - Tratamiento control	22
Anexo J Anova	24

Anexo K Post- Anova	24
Anexo L Tracciòn inndirecta - Tratamiento 7%	3
Anexo M Tracciòn indirecta - Tratamiento 7.5%	5
Anexo N Tracciòn indirecta - Tratamiento control	7
Anexo O Analisis del concreto asfaltico nor el metodo MARSHALI	o

1. INTRODUCCION

El presente trabajo comprende el estudio de las alternativas en el diseño de una estructura de pavimento con materiales abundantes contaminantes y su proyección para los diferentes factores que afectan directa o indirectamente el pavimento y su subsuelo. No ha sido considerado su implementación regida, aunque es muy pronunciado el movimiento para técnicas constructivas más amigables con el medio ambiente.

Se entiende por reciclaje de un pavimento al reaprovechamiento de dicho material que ha cumplido con su proyección de uso. Todo el desarrollo de este proyecto se dio mediante la recopilación de información y ensayos de laboratorio que definieron respectivamente a cada uno de estos materiales cuyos resultados fueron comparados con las especificaciones del INVIAS, e inicialmente se realizó una descripción sobre los aspectos más relevantes de cada uno de los materiales estudiados.

La importancia de reutilizar material y en especial a los abundantes contaminantes se pueden observar los grandes efectos en el impacto ambiental, el desarrollo económico de un territorio que se ve beneficiado de tales estructuras y el ahorro de

presupuestos en el proyecto; "Solamente en 1915 el 30% de los habitantes del planeta vivía en ciudades, en la actualidad ese porcentaje se eleva al 50%, estimándose que en el 2030 alrededor de 5.000 millones de personas residirán en las metrópolis. El desperdicio en la construcción corresponde al 20%, en masa, como mínimo, de todos los materiales utilizados en una obra. Valores de 10 a 15% son obtenidos en países europeos." (JOUCHELEVICH, 2004)

"Además de que los constructores pagan por transportar escombros en viajes de 6 m3, entre \$ 70.000 y \$ 150.000 (con certificado). Mínimo se pagaría por botar todos los escombros \$ 4.790'000.000 anuales. Los constructores formales pagarían entre \$ 2.395'000.000 y \$ 5.132'140.000 sin o con certificación. ü Además, no se están contabilizando los gastos administrativos y de logística de esta actividad, así como el valor de adecuar, disponer y mantener el "botadero". (Por esto pagamos los ciudadanos)." (Ing. Alejandro Salazar Jaramillo, 2011)

Donde sus características físico-químicas y mecánicas no son alteradas drásticamente y con un correcto estudio se obtiene un diseño de estructura de pavimento flexible en caliente cumpliendo con las diferentes normas.

El pavimento de una vía está sujeto a la acción continua del tráfico y de la meteorología. Estos dos factores, junto con el desgaste natural de los materiales, hacen que la estructura sufra un proceso de progresivo deterioro. Tal desgaste y deterioro conlleva un descenso en los niveles de seguridad y confort de manejo.

El presupuesto necesario para el mantenimiento, así como los efectos negativos ambientales que de él se derivan, justifican la implementación de nuevas técnicas que permitan reducir costos y sean amigables con el medio ambiente. Bajo este concepto, el reciclado de firmes, como medio de reutilizar los recursos, toma un innovador protagonismo y se convierte en una necesidad donde la creciente sensibilización social acerca del deber de preservar el medio ambiente ha hecho que legislación sea hov intervenga más que en el pasado." (ESCUELA PROFESIONAL DE INGENIERIA CIVIL-UPAO, 2006)

2. JUSTIFICACIÓN

Preguntas/problemas

- ¿Es viable el reciclaje de un pavimento flexible?
- ¿Que impide el reciclaje de un pavimento flexible?

Hipótesis

Con un buen análisis de los materiales que conforman dicha mezcla reciclada y su comportamiento modificado, se puede obtener una estructura de pavimento flexible que cumpla con diferentes estándares de diseño

El reciclado de pavimentos flexibles, es una técnica viable y económica para el mejoramiento y mantenimiento de las carreteras colombianas, ya que hace posible reutilizar los materiales que se encuentran dispuestos en nuestras carreteras, una vez han cumplido con la vida útil, lo que representa economía en el mantenimiento y rehabilitación de los pavimentos en servicio, conservando así el patrimonio vial.

Es por esto que se pretende llevar a cabo el mejoramiento de las vías terciarias, por tal razón, se realiza el estudio de los agregados (Rap y Weo), con el fin de determinar cuál de estos cumple con todos los criterios y requerimientos establecidos por el Instituto Nacional de Vías (INVIAS). Para verificar estos criterios se realizan diferentes ensayos de laboratorio, con el propósito de analizar los resultados obtenidos por los mismos, las características físico mecánicas que estos pueden presentar con o sin los materiales los cuales se pretende mejorar el pavimento.

Adicionalmente se analiza y compara los resultados que son obtenidos mediante el ensayo de Marshall y tracción, donde se puede observar la resistencia que pueden presentar los agregados. Cabe aclarar que no solo se deben revisar esos requerimientos, si no también, los impactos ambientales que estos están generando al estar expuestos a las emisiones atmosféricas, sin tener de estos un control sobre el uso y re uso de los mismos.

Por ello la finalidad de este proyecto es el reciclaje de pavimentos flexibles utilizando materiales que están al alcance de la mano y que pueden ser reutilizados, para así, mitigar los impactos ambientales que estos generan.

3. ANTECEDENTES

Durante los últimos cincuenta años se ha presentado un desarrollo sin precedentes en infraestructura, particularmente en la de carreteras. Muchos miles de kilómetros de nuevas carreteras fueron construidos alrededor del mundo para satisfacer la demanda de los volúmenes crecientes de tráfico.

Gran parte de estas carreteras han estado en uso por más de dos décadas y han alcanzado el final de su periodo de diseño, adicionando a ello que la masa promedio de los vehículos a aumentado, las mayores cargas por eje y la edad, han contribuido

en forma continua a través de los años, al deterioro de las carreteras, requiriendo por tanto, el desarrollo de nuevas técnicas que permitan conservarlas en niveles de servicios aceptables, lo que dio origen a la técnica del reciclaje de pavimentos asfálticos. (Mineros & Rodrigues Molina, 2004)

Anteriormente las superficies y bases que conforman un pavimento eran comúnmente removidas cuando este ya estaba muy deteriorado o ya había cumplido con su vida útil, el fin que se le daba a estos materiales era un desalojo total, y eran restituidos por materiales nuevos, elevándose así los costos por la construcción de una carretera nueva. (Mineros & Rodrigues Molina, 2004)

Ahora ante tal situación se está utilizando un método de rehabilitación de carreteras como lo es el reciclaje, lo cual genera una forma de ahorrar energía, recursos naturales, fondos y reducir el problema de la disposición de desechos. Algunos tipos de reciclado de pavimentos flexibles conocidos y utilizados actualmente, son los mencionados a continuación: (Mineros & Rodrigues Molina, 2004)

Reciclado en caliente.

Se combina el RAP (pavimento asfáltico recuperado) con agregado nuevo y cemento asfáltico y/o agente de reciclado, para producir una mezcla asfáltica en caliente. Si bien se usan plantas en caliente por pastones (terceados), comúnmente las plantas empleadas para producir la mezcla reciclada son las del tambor. El RAP en su mayor parte es producido por fresado en frío, pero también puede elaborarse a partir de la remoción del pavimento y trituración. Los equipos y procedimientos para colocación y compactación de la mezcla son aquellos típicos de las mezclas asfálticas en caliente. (Mineros & Rodrigues Molina, 2004)

Reciclado en caliente in-situ.

El reciclado se lleva a cabo en el lugar y el pavimento típicamente se procesa hasta una profundidad de 20-60 mm. El pavimento asfáltico es calentado, ablandado y escarificado hasta la profundidad especificada. Se agrega una emulsión asfáltica u otro agente de reciclado, y empleando uno de los procesos, se incorpora nueva mezcla asfáltica en caliente en la medida necesaria. (Mineros & Rodrigues Molina, 2004)

En una revisión cronológica de las especificaciones de construcción del Instituto de Desarrollo Urbano (IDU), se puede encontrar que en el año 1995 aún no se consideraba al RAP como material de construcción. No fue sino hasta el 18 de mayo de 2006 que mediante la resolución IDU 1959, se reguló el uso de los materiales obtenidos en el reciclaje de pavimento asfáltico en las secciones 450 y 454 de las especificaciones de construcción IDU-ET-2005.

"En Bogotá se tienen registros de que, a partir del año 2007, se utilizan las emulsiones asfálticas para estabilizar el material obtenido del fresado de capas de pavimento asfaltico que ya han cumplido su vida útil y han sido removidas para ser remplazadas por mezclas asfálticas nuevas. Las obras de fresado estabilizado generan la posibilidad de habilitar vías para el uso por parte del tráfico liviano, que nunca han tenido estructura de pavimento y mejorar la calidad de vida en barrios en crecimiento en la periferia de la ciudad" (Hernández Hernández, 2014). En la ciudad de 8 Antecedentes Bogotá se ha venido utilizando este tipo de mejoramiento desde hace algunos años de forma extensa por parte de la Unidad de Mantenimiento Vial (UMV).

4. OBJETIVOS

4.1 OBJETIVO GENERAL

Evaluar propiedades (Físico- mecánicas) de mezclas asfálticas recicladas con diferentes porcentajes de (WEO)

4.2 OBJETIVOS ESPECIFIOS

Caracterizar materiales que conforman la mezcla.

Elaborar las diferentes mezclas de asfalto reciclado con variaciones en el porcentaje de (WEO).

Analizar resultados y datos arrojados por los múltiples ensayos en las briquetas.

5. ESTADO DEL ARTE

Desde el origen de los tiempos, la realización de vías y caminos han sido signos de civilización avanzada... Por esta y muchas razones la evolución de técnicas y materiales para su construcción son vitales, además del desarrollo que este conlleva. Guillermo Alfonso Jaramillo, anunció que le entregará otros \$25.000 millones a las Fuerzas Armadas para que sigan reparando vías en los barrios de la capital del Tolima. 2016

El alcalde aseguró, que, hasta el momento, se tiene planeado reparar al menos 10 calles por toda la ciudad.

Evaluar el proceso constructivo previsto para el mandato del actual alcalde como fuente para una técnica de mezcla asfáltica reciclada con el uso del material removido de dichas vías con intervención de mantenimiento.

Donde factores como: Demanda constructiva

Uso del material para reciclaje

Con el aporte de dicha intervención puede hacer parte del revolucionario uso de la mezcla asfáltica reciclada por reutilización de materiales y la disposición que sabemos ya está previsto en la ciudad de Ibaqué

Para el 2018 el alcalde Guillermo Jaramillo ha anunciado el inicio de obras de algunas de esas vías que los estudios han arrojado contribuirían significativamente a mejorar el tráfico en la Ibagué. "Estamos pensando en un nuevo crédito de 40 mil millones de pesos para vías específicas, ya no son para arreglar vías de los barrios o solucionar problemas de infraestructura, sino para iniciar la construcción de la carrera 13, la calle 103, solo entre estas dos estamos hablando de más de 10 kilómetros de vía", indicó Jaramillo. 2018

Analizar el punto de crecimiento en el desarrollo vial en la ciudad de Ibagué y lo que esto representa en el uso de técnicas mas amigables con el medio ambiente en la construcción de estructuras de pavimento

Teniendo en cuenta: El desarrollo en infraestructura

Nuevas técnicas que afrontan el impacto al medio ambiente

La demanda de desarrollo vial por parte de la ciudad capital del Tolima, es a su vez una gran oportunidad de usar diferentes técnicas en el proceso constructivo de dichas estructuras de pavimento.

Por otro lado, la necesidad de reducir residuos tóxicos representa un inmenso avance para la buena convivencia con el medio ambiente.

Los aceites residuales generados representan más del 60% de los aceites lubricantes consumidos. Esto hace que los aceites usados sean uno de los residuos contaminantes más abundantes que se generan actualmente, alcanzando la cifra de 24 millones de tonelada métrica año. **2016**

El desconocimiento de la norma hace que las personas den una disposición final inadecuada a estos aceites, dándole usos no apropiados como:

- Vertido al suelo, cursos de agua, alcantarillado y sistemas de drenaje
- Impermeabilización de suelos.
- Desmoldante de piezas de ladrillo y tejas de arcilla.
- Control de maleza.
- Inmunización de madera.
- Mezclas con plaguicidas, solventes
- Mezclas con aceites dieléctricos contaminados con PCB
- Uso como combustible en quemas a cielo abierto y en combustiones no controladas

Finalmente es importante tener en cuenta que en el año 2012 CORTOLIMA adopta el plan departamental para la gestión integral de residuos peligrosos mediante la resolución 2164 de 25 de junio, en el documento se contemplan tres programas; de fortalecimiento de la capacidad y coordinación institucional, prevención y minimización de la generación del RESPEL en el departamento y promoción del aprovechamiento, valorización y disposición final.

Se debe tener en cuenta el correcto manejo y disposición de este recurso que representa a uno de los más abundantes contaminantes actualmente, pero que por sus características favorece a la reutilización y utilización de nuevas técnicas constructivas para mezclas asfálticas.

¿PARA QUE SIRVE?

Esta técnica hace posible reutilizar los materiales que se encuentran en las carreteras cuando llegan a su vida útil. Según el estudio, este proceso representa a los inversionistas un ahorro en el mantenimiento y rehabilitación de los pavimentos en servicio.

El experto de la Universidad Católica, Javier Ulloa Duarte, dio a conocer la importancia de este sistema de reciclaje de pavimentos, ya sea a través de las técnicas en frío como en caliente.

Javier Ulloa Duarte es ingeniero químico, especialista en asfaltos para pavimentos de la Universidad Industrial de Santander, con experiencia por más de 25 años en el desarrollo y formulación de emulsiones asfálticas, pruebas de laboratorio y manejo de mezclas con emulsiones. 2012

Tal como lo plantea el especialista, es necesario incluir los diferentes residuos que pueden componer una estructura de pavimento flexible tanto por el factor económico como el impacto ambiental que este genera en un país en pleno desarrollo como lo es Colombia

Esta técnica hace posible reutilizar los materiales que se encuentran en las carreteras cuando llegan a su vida útil. Según el estudio, este proceso representa a los inversionistas un ahorro en el mantenimiento y rehabilitación de los pavimentos en servicio.

Economizar fondos monetarios Proyecto investigativo y experimental Del especialista "Javier Ulloa Duarte" de la Universidad del Cauca Es necesario incluir los diferentes residuos que pueden componer una estructura de pavimento flexible tanto por el factor económico como el impacto ambiental que este genera en un país en pleno desarrollo como lo es Colombia.

6. MARCO DE REFERENCIA

6.1 MARCO TEORICO

La normatividad técnica colombiana acepta las mejoras que se le puedan realizar al reciclaje de pavimentos mejorando la capacidad estructural del mismo, estos mejoramientos muchas veces se realizan a través de adiciones de materiales, o adición de soluciones estabilizadoras externas. La estabilización de un material consiste en cambiar o modificar sus propiedades mecánicas, físicas y/o químicas mediante la adición de materiales o mezcla de aditivos externos, de esta manera se permite mejorar las propiedades de los agregados dependen en gran medida de su sitio natural de extracción, por esta razón es primordial conocer el suelo con sus características físicas, químicas y mecánicas.

- 6.1.1. I.N.V. E 218-13, (Resistencia a la Degradación de los Agregados de Tamaños Menores de 37.5 mm (1½") por Medio de la Maquina de los Ángeles. Este ensayo mide la resistencia a la degradación de los agregados gruesos (naturales o triturados), por medio de la máquina de los ángeles y la carga abrasiva.(INVIAS, 2013c)
- **6.1.2.** I.N.V.E 222- 13 (Densidad, densidad relativa (gravedad especifica) y absorción del agregado fino). Esta norma describe el procedimiento que se debe seguir para determinar la densidad promedio de una cantidad de partículas de agregado fino, la densidad relativa y la absorción del agregado fino. (INVIAS, 2013)
- **6.1.3.** I.N.V.E 223-13 (Densidad, densidad relativa (gravedad especifica) y absorción del agregado grueso) Esta norma describe el procedimiento que se debe seguir para determinar la densidad promedio de una cantidad de partículas de agregado grueso, la densidad relativa y la absorción del agregado grueso. (INVIAS, 2013)
- **6.1.4. I.N.V. E -123- 13, (Determinación de los Tamaños de las Partículas de los Suelos),** se refiere a la determinación cuantitativa de la distribución de los tamaños de las partículas de un suelo.(INVIAS, 2013b)

Tabla 1 Granulometría y clasificación

	TAMIZ (mm / U.S. Standard)							
TIPO DE	37.5	25.0	19.0	9.5	4.75	2.00	0.425	0.075
GRADACIÓN	1 ½"	1"	3/4"	3/8"	No. 4	No. 10	No. 40	No. 200
		% PA	SA					
A-38	100	-	80-100	60-85	40-65	30-50	13-30	9-18
A-25	-	100	90-100	65-90	45-70	35-55	15-35	10-20
Tolerancias en producción sobre la fórmula de trabajo (±)	0 %		7 %			6 %		3 %

uente: (INVIAS, 2013b).

6.1.5 I.N.V. E 725-13 (Evaluación de la susceptibilidad al agua de las mezclas de concreto asfaltico utilizando la prueba de tracción indirecta) Establece un procedimiento para preparar y probar especímenes de concreto asfaltico, con el fin de medir el efecto del agua sobre su resistencia a la tracción directa. (INVIAS, 2013) **6.1.6** I.N.V. E – 748-13 (estabilidad y flujo de las mezclas asfálticas en caliente empleando el aparato Marshall) Esta norma describe el procedimiento para determinar la resistencia a la deformación plástica de especímenes de mezclas asfálticas para pavimentos, empleando el aparato Marshall. (INVIAS, 2013)

F

7. MARCO CONCEPTUAL

ACEITE QUEMADO: el aceite quemado es el aceite usado procedente del cárter de un vehículo el cual es un residuo altamente contaminante, por su contenido en metales pesados y su baja biodegradabilidad, que requiere de un adecuado tratamiento y una correcta gestión.

AGREGADOS: los agregados, son materiales granulares e inertes, de origen natural o por un proceso de trituración a partir de rocas. Constituyen entre el 65% y el 85% del volumen total del Concreto; además, constituyen aproximadamente el 95% de las mezclas asfálticas.

AGREGADOS FINOS: el agregado fino o arena se usa como llenante, además actúa como lubricante sobre los que ruedan los agregados gruesos dándole manejabilidad al concreto asfaltico.

AGREGADOS GRUESOS: el agregado grueso es la materia prima para fabricar el concreto. En consecuencia, se debe usar la mayor cantidad posible y del tamaño mayor, teniendo en cuenta los requisitos de colocación y resistencia.

ARENA: conjunto de partículas de roca de 0.05 a 2 mm, es parte de los agregados usados para la mezcla de concreto y constituyen un buen material para la cimentación siempre que no tengan agua dentro de su estructura.

ASFALTO: se llama pavimento al conjunto de capas de material seleccionado que reciben en forma directa las cargas del tránsito y las transmiten a los estratos inferiores en forma disipada, proporcionando una superficie de rodamiento, la cual debe funcionar eficientemente.

BASE: es la capa que se encuentra bajo la capa de rodadura de un pavimento asfáltico. Debido a su proximidad con la superficie, debe poseer alta resistencia a la deformación, para soportar las altas presiones que recibe.

COMPACTACIÓN: proceso mediante el cual se juntan partículas de suelo lo más posible, expulsando el aire que queda entre éstas, y reduciendo la separación entre partículas al mínimo.

COMPRESION: el esfuerzo de compresión es la resultante de las tensiones o presiones que existen dentro de un sólido deformable o medio continuo, caracterizada porque tiende a una reducción de volumen del cuerpo, y a un comportamiento del cuerpo en determinada dirección.

ESTABILIDAD: está definida por la capacidad de un pavimento de mantener o restaurar su equilibrio bajo las cargas del tránsito que tienden a desplazarla. No puede desarrollarse estabilidad sin fricción que tiene un lugar cuando por compactación se mantienen las partículas en contacto. (Rivetti, 2013).

FASE DE FATIGA: es la fase final en la vida de la estructura. Las deflexiones causadas por el constante paso de las ruedas de los vehículos provocan tensiones de tracción en los revestimientos asfálticos, que vienen acumulándose desde la fase elástica hasta que la capa se rompe por fatiga después de cierto número de pasadas, momento a partir del cual comienza un colapso gradual en toda la vía requiriéndose prácticamente una reconstrucción de la misma.

GRANULOMETRIA: es la distribución de los tamaños de las partículas de un agregado, tal como se determina por análisis de tamices. Es la medición de los granos de una formación sedimentaria y el cálculo de la abundancia de los correspondientes a cada uno de los tamaños previstos por una escala granulométrica.

GRAVA: está formada por fragmentos de roca no consolidada de 2 a 6 mm de dimensión, comúnmente está compuesta de roca sana y dura, por esto es un buen material para construcción, este tipo de grava llega a soportar una carga de 10Ton/ft2. Este material está incluido en la mezcla que forma el concreto.

LABORATORIO: organismo auxiliar del Supervisor, contratado por la Dependencia, que se encargará de verificar, analizar y calificar, durante todo el proceso de la obra, la calidad y el comportamiento de los materiales, naturales o procesados, que se empleen para dicha obra.

PAVIMENTO: está constituido por un conjunto de capas superpuestas, relativamente horizontales, que se diseñan y construyen técnicamente con materiales apropiados y adecuadamente compactados. Estas capas se apoyan sobre la subrasante. El pavimento debe resistir los esfuerzos que las cargas repetidas del tránsito le imponen durante el período para el cual se diseña, así como soportar las deformaciones máximas admisibles por los materiales que lo conforman. (Montejo Fonseca, 2002)

RAP: es el término que se le da a los materiales del pavimento removidos y/o reprocesados que contienen asfalto y agregados. Estos materiales se generan cuando los pavimentos asfálticos son removidos para reconstrucción o rehabilitación.

REHABILITACION: ejecución de las actividades construidas necesarias para establecer las condiciones físicas de la carretera a su situación como fue construida originalmente.

SUB-BASE: es la capa que se encuentra entre la base y la subrasante en un pavimento asfáltico. Debido a que está sometida a menores esfuerzos que la base, su calidad puede ser inferior y generalmente está constituida por materiales locales granulares o marginales.

SUB-RASANTE: la función de la sub-rasante es soportar las cargas que transmite el pavimento y darle sustentación, además de considerarse la cimentación del pavimento.

VISCOSIDAD: la viscosidad se refiere a la resistencia que poseen algunos líquidos durante su fluidez y deformación. Por tanto, la viscosidad es una de las principales características de los líquidos.

WINDEPAV: es un programa que calcula los esfuerzos y las deformaciones máximas que una rueda doble colocada en la superficie produce los niveles de interface de un sistema elástico multicapa, constituido de 2 a 6 capas.

8. MATERIALES E INSTRUMENTOS

8.1 MATERIALES

Los principales materiales usados para el desarrollo de esta investigación fueron agregados vírgenes, RAP, cemento asfaltico, WEO. Se utilizaron diferentes materiales para llevar a cabo los ensayos requeridos por las diferentes normas que se realizó. A continuación, son detallados el origen de los materiales usados.

AGREGADOS VIRGENES: Los materiales fueron suministrados por el rio Cucuana municipio de san Antonio- Tolima, gracias al compañero Michael.

CEMENTO ASFALTICO: Asfalto nuevo por parte de la concesionaria san Rafael.

EQUIPOS E INSTRUMENTOS: Los diferentes ensayos se realizaron en la Universidad cooperativa de Colombia sede- Ibagué, la cual cuenta con todos los equipos e instrumentos necesarios para realizar todos los ensayos solicitados.

RAP: Concesionaria auto-vía

WEO: Alexander Alvares (Universidad del Tolima)

9. METODOLOGIA EXPERIMENTAL

En el presente trabajo se analizarán las características físicas y mecánicas que presentan los agregados vírgenes para el reciclaje de pavimentos. Para este fin se procede a identificar mediante los ensayos de laboratorio establecidos por la normatividad INVIAS 2013, dichas características resultantes que se desean mejorar. La metodología utilizada en el desarrollo del proyecto ha sido de orientación experimental. Se trata de una metodología con una importante base teórica y práctica. A nivel teórico incorpora nociones y conceptos de todo el conocimiento adquirido en el transcurso del Programa Ingeniería Civil, y a nivel práctico ya que realizando los diferentes ensayos de laboratorio se analizarán los resultados obtenidos, para determinar qué tan viables son los tratamientos que se utilizarán para el reciclaje de pavimentos.

Esta metodología ha sido empleada en diversos proyectos de investigación y desarrollo a nivel nacional e internacional que han versado sobre temáticas afines del reciclado de pavimentos.

Como anteriormente se mencionó, primero se realizarán los laboratorios necesarios para obtener los resultados y seguidamente se analizarán para determinar qué tan viables son los tratamientos que se utilizan para el reciclaje de pavimentos.

9.1 ENSAYOS REALIZADOS:

Los ensayos se hicieron con base en los procedimientos establecidos por el Instituto Nacional de Vías I.N.V. E– 13, dentro de los cuales se realizaron los siguientes laboratorios: I.N.V. E – 123 – 13 (Determinación de los tamaños de partículas de los suelo), I.N.V.E – 218 - 13 (Resistencia al desgaste de los agregados de tamaños menores de 37.5 mm (1½") por medio de la máquina de los ángeles), I.N.V.E- 222-13 (densidad, densidad relativa (gravedad especifica) y absorción del agregado fino), I.N.V.E 725-13 (Evaluación de la susceptibilidad al agua de las mezclas de concreto asfaltico utilizando la prueba de tracción indirecta), I.N.V.E – 748-13 (estabilidad y flujo de las mezclas asfálticas en caliente empleando el aparato Marshall)

9.2 CARACTERIZACION AGREGADOS VIRGENES

La caracterizada para este material fue la granulometría realizada de acuerdo con la norma de ensayo de materiales para carretera norma **INVIAS 123- 13** (Determinación de los tamaños de las partículas de los suelos). Esta caracterización tiene como objetivo particular determinar si las características de los agregados vírgenes son compatibles con los requeridos para una mezcla asfáltica MDC-19 (Cap 4, Art. 450-13 Cap. 4 – especificaciones generales de construcción de carreteras de INVIAS). (Gallego Quintana, (2017))

INVIAS 123-13 (Determinación de los tamaños de las partículas de los suelos).

- ✓ El ensayo inicia con el secado de la muestra en el horno, por un lapso de 24 horas, al siguiente día se retira el material del horno para iniciar con el ensayo, se registra el peso y se lava el material hasta que el agua salga totalmente limpia, seguidamente se ingresa nuevamente al horno por un lapso de 24 horas.
- ✓ Al siguiente día se retira del horno, se deja reposar para iniciar con el ensayo. La muestra se debe cuartear, pero en nuestro caso, se tomará una muestra representativa.
- ✓ Se acomodan los tamices iniciando con el fondo, siguiendo con el N° 200, N°80, N°40, N° 10, N° 4, 3/8", ½", ¾" y 1" seguidamente se vacía la muestra sobre el juego de tamices, se sacuden los tamices con un movimiento lateral y vertical acompañado de vibración y realizando circunferencias de forma que la muestra se mantenga en movimiento continuo sobre la malla. En ningún caso se permite girar o manipular manualmente fragmentos de la muestra a través de un tamiz. Al desmontar los tamices debe comprobarse que la operación está terminada; esto se sabe cuándo no pasa más del 1 % de la parte retenida al tamizar durante un minuto, operando cada tamiz individualmente. Si quedan partículas atrapadas en la malla, deben separarse usando un pincel o cepillo y reunirlas con lo retenido en el tamiz.

tamices

la 4.0 Internacional.

Fotografía

Juego

de

Este obra está bajo una licencia de Creative Commons Red

Fuente: Autores

Tabla 2 Granulometría admisible para el reciclaje de pavimentos

	Tamiz	Dercentale que nace
[mm]	U.S. Standar	Porcentaje que pasa
37.5	1 ½"	100
25.0	1"	75-100
19.0	3/4"	65-100
9.5	3/8"	45-75
4.75	N°4	30-60
2.00	N°10	20-45
0.43	N°40	10-30
0.075	N°200	5-20

Fuente: Adaptado de la Tabla 450.1 especificaciones técnicas IDU (2011)

- Se determina la masa de cada fracción en una balanza con una sensibilidad de 0.1 %. La suma de las masas de todas las fracciones y la masa inicial de la muestra no debe diferir en más de 1 %. (Ver capítulo 8 RESULTADOS Y ANALISIS).
- I.N.V.E 218 13 (Resistencia al desgaste de los agregados de tamaños menores de 37.5 mm ($1\frac{1}{2}$ ") por medio de la máquina de los ángeles).
- ✓ Seguidamente se determinará la resistencia a la degradación de los agregados, tomando como referencia la Norma I.N.V.E 218 13. Este ensayo mide

la resistencia a la degradación de los agregados gruesos (naturales o triturados), por medio de la máquina de los ángeles y la carga abrasiva. (INVIAS, 2013c), Se mezcla toda la grava que pasa por los tamices y se realiza el lavado para luego secarla en el horno y llevarla a la máquina de los ángeles.

Este ensayo mide la degradación de un agregado pétreo con una composición granulométrica definida, como resultado de una combinación de acciones que incluyen abrasión, impacto y molienda en un tambor de acero rotatorio que contiene un número determinado de esferas metálicas, el cual depende de la granulometría de la muestra de ensayo. a medida que gira el tambor una pestaña de acero recoge la muestra y las esferas de acero y las arrastra hasta que caen por gravedad en el extremo opuesto del tambor, hasta que la pestaña las levanta y se repite el ciclo. Tras el número especificado de revoluciones, se retira el contenido del tambor y se tamiza la porción de agregado para medir la degradación como un porcentaje de perdida.

La carga consistirá en esferas de acero, de un diámetro aproximado de 46.8mm y una masa comprendida entre 390g y 445g. Como se muestra enseguida, la carga abrasiva dependerá de la granulometría de ensayo A, B, C, D.

Tabla 3 Granulometría de ensayos A, B, C o D

GRANULOMETRÍA	NÚMERO DE ESFERAS	MASA DE LA CARGA, g
A B	12 11	5000 ± 25 4584 ± 25
1 C	8 6	3330 ± 20 2500 ± 15

Fuente: (INVIAS, 2013a).

Se elige en la tabla 218-1 la granulometría más parecida a la del agregado que se va a usar en la obra. Se prepara la muestra reducida en las fracciones indicadas en la tabla, de acuerdo con la granulometría elegida. Se recombinan las fracciones para formar una muestra de ensayo con la composición indicada en la tabla. Se pesa la muestra de ensayo con aproximación a 1g y se registra el valor obtenido.

Tabla 4 Granulometría de las muestras de ensayo

TAMAÑ	OS DE TAMIZ	MASAS DE LAS DIFERENTES FRACCIONES, g			
PASA TAMIZ	RETENIDO EN	GRANULOMETRÍAS			
PASA TAIVIIZ	TAMIZ	А	В	16 V	D
37.5 (1½") 25.0 (1") 19.0 (3/4") 12.5 (½") 9.5 (3/8") 6.3 (¼") 4.75 (No.4)	25.0 (1") 19.0 (3/4") 12.5 (½") 9.5 (3/8") 6.3 (¼") 4.75 (No. 4) 2.36 (No. 8)	1250 ± 25 1250 ± 25 1250 ± 10 1250 ± 10	2500 ± 10 2500 ± 10	2500 ± 10 2500 ± 10	5000 ± 10
	Total	5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10

Fuente: (INVIAS, 2013a).

Luego de comprobar que el tambor este limpio, la muestra y la carga abrasiva correspondiente se colocan en la máquina de los ángeles y se hace girar el tambor a una velocidad comprendida entre 188 y 208 rad/minuto hasta completar 500 revoluciones. La máquina deberá girar de manera uniforme para mantener una velocidad periférica prácticamente constante. Una vez cumplido el número de vueltas prescrito, se descarga el material del tambor y se procede con una separación preliminar de la muestra ensayada, empleando un tamiz de abertura mayor (No. 12). La fracción fina que pasa se tamiza a continuación empleando el tamiz (No.12. el material más grueso que la abertura del tamiz (No.12) se lava, se seca en el horno, a una temperatura de 110+- 5° C (según la norma 218-13 INVIAS)

- ✓ Seguidamente se procede a realizar el ensayo de la norma I.N.V.E- 222- 13 (densidad, densidad relativa (gravedad especifica) y absorción del agregado fino). Se toma una muestra de aproximadamente 489.7 gr, se utiliza el Tamiz No 4, y se trabaja con el peso retenido en este tamiz.
- ✓ Seguidamente se llena parcialmente el picnómetro con agua. Inmediatamente, se introducen en el picnómetro, 400 ± 10 g del material y se le añade agua hasta aproximadamente un 90 % de su capacidad (es decir hasta la marca del mismo). Para eliminar el aire atrapado se agita manualmente el picnómetro o se gira a favor y en contra de las manecillas del reloj para eliminar todas las burbujas de aire, se introduce un tubo envuelto con papel higiénico o toallas de papel con el objetivo de extraer todos los residuos de la muestra.

- \checkmark Se remueve todo el agregado del picnómetro, se seca hasta masa constante a una temperatura de 110 ± 5°C, se deja enfriar hasta temperatura ambiente 1± ½ hora y se determina la masa. (Ver capítulo 8- RESULTADOS Y ANALISIS).
- ✓ A continuación, se determinará la densidad, densidad relativa y absorción del agregado grueso del agregado grueso, tomando como referencia la Norma I.N.V.E − 223-13 densidad, densidad relativa (gravedad especifica) y absorción del agregado grueso.

Fotografía 2 Lavado de material para ensayo

Fuente: Autores

Se seca la muestra en un horno a $110 \pm 5^\circ$ C hasta masa constante, se deja a temperatura ambiente de 1 a 3 horas, posteriormente se sumerge en agua a temperatura ambiente durante 24 horas, se retira la muestra del agua y se procede a secar las partículas sobre un paño absorbente de gran tamaño. Se obtiene su peso se procede a colocar la muestra dentro de una canastilla metálica y se determina la masa sumergida en el agua se seca la muestra en horno a $110 \pm 5^\circ$ C hasta masa constante, se enfría a temperatura ambiente y se determina su masa. (Ver capítulo 8- RESULTADOS Y ANALISIS).

9.3 CARACTERIZACION DEL RAP

En la caracterización del RAP el objetivo fue determinar la granulometría y el porcentaje de asfalto envejecido contenido en este. Para la granulometría se usó la metodología establecida en ensayo de materiales de carretera INV E-782-13, "Análisis granulométrico de los agregados extraídos de mezclas asfálticas".

9.4 CARACTERIZACION DE WEO

Para la caracterización del WEO fue necesaria la contratación de un laboratorio especializado en este tipo de pruebas. El objetivo fue determinar las propiedades

del WEO utilizado, de tal forma que sirvan como referencia a otros investigadores para efectos comparativos y/o de replicación del estudio. (Gallego Quintana, (2017))

- ✓ Se procede a elaborar seis (6) briquetas de tratamiento control, seis (6) briquetas de tratamiento N° 4 de 7% de WEO y 6 briquetas de tratamiento N° 5 de 7,5% de WEO. Para un total de (dieciocho) 18 briquetas, cada una con un peso de 1000gr.
- ✓ De las cuales 3 se utilizaron para realizar el ensayo de estabilidad y flujo (MARSHALL), 3 en estado seco y 3 sumergidas, para realizar el ensayo de tracción indirecta.

Para la elaboración de cada briqueta se tomó los siguientes pesos:

Fotografía 3 Briquetas

Fuente: Autores

Tabla 5 Datos del tratamiento control

BRIQUETAS DE CONTROL gr							
Grava Arena Llenante RAP Asfal virge							
482,7	222,8	37,1	413,9	43,53			

Fuente: Autores.

Tabla 6 Tratamiento 7% de WEO

BRIQUETAS TRATAMIENTO 7% gr								
Grava	Arena	Llenante mineral	RAP	Asfalto virgen	WEO			
482,7	222,8	37,1	413,9	39,498	4,032			

Fuente: Autores.

Tabla 7 Tratamiento 7,5% de WEO

BRIQUETAS TRATAMIENTO 7,5% gr								
Grava	Arena	Llenante mineral	RAP	Asfalto virgen	WEO			
482,7	222,8	37,1	413,9	39,21	4,32			

Fuente: Autores.

Contando con todos los pesos se procede a calentar los materiales en una estufa eléctrica hasta lograr la temperatura de 158°C, después de tener toda la muestra homogenizada es decir todos los materiales cubiertos del ligante se procede a vaciar dentro de los moldes previamente lubricados y calientes, se distribuyen uniformemente para que la muestra no quede con vacíos. Y de esta manera se procede a compactar la briqueta con 75 golpes por cada cara, se disponen las muestras a temperatura ambiente para cuando se encuentren frías, poder desmoldar las briquetas.

Para determinar la susceptibilidad al agua de las mezclas de concreto asfaltico se tomará como referencia la Norma I.N.V.E 725-13 EVALUACION DE LA SUSCEPTIBILIDAD AL AGUA DE LAS MEZCLAS DE CONCRETO ASFALTICO UTILIZANDO LA PRUEBA DE TRACCION INDIRECTA

Después de elaborar las seis (6) muestras, tres (3) para ser probados en seco y tres (3) para ser probados después de saturación parcial y acondicionamiento en un baño con agua. Se toman y se registran los diámetros y alturas de cada una de las muestras.

Fotografía 4 Briquetas sumergidas

ivada 4.0 Internacional.

Fuente: Autores.

Se procede a dejar las tres (3) muestras en agua a baño maría a una temperatura de 60°C durante 24 horas. Pasado el tiempo se secan y se toma su peso parcialmente saturado, se sumergen las muestras nuevamente en un baño de agua a temperatura de 25°C durante una (1) hora. Se mide nuevamente el diámetro y la altura de cada muestra, se determina la absorción de agua y el grado de saturación, un grado de saturación que exceda de 80% es aceptable.

Se toman las muestras en seco colocándolas en un baño a 25°C durante 20 minutos, se procede a determinar la resistencia a la tensión de ambas muestras es decir las muestras en seco y humedad.

Se coloca una muestra en el aparato de carga, con las franjas de cargas centradas y paralelas sobre el plano diametral vertical, se aplica una carga diametral a una rata de deformación 50 mm/min (2" /min) hasta que alcance la carga máxima y se registra dicha carga. Se continúa cargando hasta fracturar todas las muestras. (Ver capítulo 8- RESULTADOS Y ANALISIS).

I.N.V.E – 748-13 ESTABILIDAD Y FLUJO DE LAS MEZCLAS AFALTICAS EN CALIENTE EMPLEANDO EL APARATO MARSHALL. Se colocan las muestras en un baño de agua durante 30 a 40 minutos a una temperatura de 60°C. Se debe secar cualquier exceso de agua con una toalla, para no tener ningún inconveniente en el momento de fallar la muestra en el aparato (MARSHALL). Se ajusta a cero, y se mantiene su vástago firmemente contra la mordaza superior mientras se aplica la carga del ensayo. Se aplica la carga sobre la muestra con la prensa a una rata de deformación constante de 50± 5mm/ min hasta que ocurra la falla, es decir cuando se alcanza la máxima carga y luego comienza a decrecer. (Ver capítulo 8-RESULTADOS Y ANALISIS).

Después de determinar la estabilidad y flujo de las mezclas asfálticas en caliente empleando el aparato Marshall, con las briquetas del tratamiento control, tratamiento N°4 y tratamiento N°5, se continua con la modelación del programa WINDEPAV del cual se montan tres (3) estructuras las cuales fueron propuestas por el Ing. JULIAN ANDRES PULECIO DIAZ, quien nos dio las bases para poder ejecutar las estructuras y el programa el cual calcula los esfuerzos y las deformaciones máximas.

10. ANALISIS Y RESULTADOS

10.1 Caracterización de los agregados vírgenes

Los agregados son clastos de rocas ígneas con arenas donde predomina el cuarzo, presentaron una coloración gris homogénea, con una superficie sin agrietamientos, con porcentaje de caras fracturada importante dada su condición de material de trituración.

Los agregados vírgenes corresponden a GP- GRAVA MAL GRADADA acuerdo al sistema unificado de clasificación de suelos. (SUCS)

Resultados del análisis de granulometría de agregados vírgenes

Agregado	Porcentaje (%)
Grava	65.76
Arena	32.53
Finos	1 69

Tabla 8 Granulometría de los agregados vírgenes

	GRANULOMETRIA "Material Virgen"								
TAMIZ	Diametro (mm)	PESO RETENIDO (gr)	% RETENIDO	% RET ACUMULADO	% PASA	% Pasa (General)			
1"	25.4	0	0	0	0.00%	100			
3/4"	19.1	160.8081275	13.40067729	13.40067729	86.60%	86.6			
1/2"	12.7	514.0627888	42.83856574	56.23924303	43.76%	43.76			
3/8"	9.52	114.3724303	9.531035857	65.77027888	34.23%	34.23			
No 4	4.76	49.93105694	4.160921411	69.9312003	30.07%	30.07			
No 10	2	55.12321065	4.593600888	74.52480118	25.48%	25.48			
No 40	0.425	200.9963381	16.74969484	91.27449602	8.73%	8.73			
No 80	0.149	61.22463473	5.102052894	96.37654892	3.62%	3.62			
No 200	0.075	23.14333272	1.92861106	98.30515998	1.69%	1.69			
Fondo	0	20.33808027	1.694840022	100	0.00%	100			
TOTAL		1200	221.9345293						

Grava	65.76%
Arena	32.53%
Finos	1.69%

Fuente: Autores.

Vigen

Cu(c.uniformidad) 88,23529412 Cz(c.curvatura 26,36862745

D10 0,17 D30 8,2 D60 15

Las gradaciones de los agregados vírgenes cumplen en su mayoría con los rangos especificados para mezclas asfálticas tipo MDC-19 (Art. 450-13 Cap. 4 – Especificaciones generales de construcción de carreteras del INVIAS) como se aprecia a continuación.

10.2 Caracterización de los agregados vírgenes en el ensayo I.N.V.E – 218 - 13 (Resistencia al desgaste de los agregados de tamaños menores de 37.5 mm (1½") por medio de la máquina de los ángeles)

Peso: 5000 kg

Tabla 9 Tamizado del agregado virgen

	PESO RETENIDO	PESO TARAS
TAMIZ		
3/4"	1251,616 g	0,184 kg
1/2"	1254,719 g	0,289 kg
3/8"	1250,625 g	0,075 kg
1/4"	1252,936 g	0,064 kg

Fuente: Autores.

P1: masa de la muestra seca antes del ensayo.

P2: masa de la muestra seca después del ensayo, previo lavado sobre tamiz de 1.70mm (No.12)

Peso inicial: 5000 kg P1 Peso final: 3420 kg P2

$$\frac{3420}{5000} = 0,684 - 100 = 31.6 \%$$

PORCENTAJE DE DESGASTE EN LA MAQUINA DE LOS ANGELES 31.6%

Tabla 10 Granulometría de finos

	GRANULOMETRIA DE FINOS								
TAMIZ	Diametro (mm)	PESO RETENIDO (gr)	% RETENIDO	% RET ACUMULADO	% PASA	% Pasa (General)	Peso retenido corregido	COEFICIENTE DE CORRECCIÓN	
1"	25.4	0	0	0	0.00%	100	0	0.701313113	
3/4"	19.1	0	0	0	0.00%	100	0		
1/2"	12.7	0	0	0	0.00%	100	0		
3/8"	9.52	0	0	0	0.00%	100	0		
No 4	4.76	26.2	4.845570557	4.845570557	95.15%	95.15	18.37440355		
No 10	2	78.6	14.53671167	19.38228223	80.62%	80.62	55.12321065		
No 40	0.425	286.6	53.00536342	72.38764564	27.61%	27.61	200.9963381		
No 80	0.149	87.3	16.14573701	88.53338265	11.47%	11.47	61.22463473		
No 200	0.075	33	6.103199556	94.63658221	5.36%	5.36	23.14333272		
Fondo	0	29	5.363417792	100	0.00%	100	20.33808027		
TOTAL		540.7	100				379.2	0.701313113	

Fuente: Autores

Tabla 450 - 3. Requisitos de los agregados para mezclas asfálticas en caliente de gradación continua

CARACTERÍSTICA		NIVEL DE TRÂNSITO		
	INV	NT1 NT2		NT3
Dureza, agregado grueso (O)		5		
Desgaste en la máquina de los Ángeles, máximo (%))		
- Capa de: rodadura / intermedia / base, 500 revoluciones	E-218	25/35/-	25/35/35	25 / 35 / 35
- Capa de: rodadura / intermedia / base, 100 revoluciones		5/7/-	5/7/7	5/7/7
Degradación por abrasión en el equipo Micro-Deval, máximo (%)	E-238			
- Capa de: rodadura / intermedia / base			25/30/30	20/25/25
Resistencia mecánica por el método del 10% de finos, capa de: rodadura / intermedia / base - Valor en seco, mínimo (kN) - Relación húmedo/seco, mínima (%)	E-224			110/90/75 75/75/75
Coeficiente de pulimiento acelerado para rodadura, mínimo	E-232	0.45	0.45	0.45
Durabilidad (O)				
Pérdidas en ensayo de solidez en sulfato de magnesio, agregados fino y grueso, máximo (%)	E-220	18	18	18
Limpieza, agregado grueso (F)	1			
Impurezas en agregado grueso, máximo (%)	E-237	0.5	0.5	0.5
Limpieza, gradación combinada (F)		_		
Índice de plasticidad, máximo (%)	E-125 y E-126	NP	NP	NP
Equivalente de arena, mínimo (%) (Nota 1)	E-133	50	50	50

10.3 Densidad relativa (gravedad específica) y absorción del agregado fino

Simbolos:

A: Masa al aire de la muestra seca al horno, gr

B: Masa del picnometro aforado lleno de agua, gr

C: Masa total del picnometro aforado con la muestra y lleno de agua, gr

• Densidad relativa (gravedad especifica) seca al horno (SH).

Procedimiento gravimetrico:

$$GS = \frac{489.7}{(650.7 + 500 - 961.7)} = 2.59$$

• Densidad relativa (gravedad especifica) en condicion saturada y superficialmente seca (SSS).

Procedimiento gravimetrico:

Gsaturado =
$$\frac{500}{(650.7 + 500 - 961.7)}$$
 = **2.65**

Densidad relativa aparente (gravedad especifica aparente)

Procedimiento volumetrico:

Gm =
$$\frac{A}{+ A}$$
 = $\frac{489.7}{650.7 + 489.7 \cdot 961.7}$ = 2.74

DENSIDAD

• Densidad en condicion seca al horno (SH)

Procedimiento gravimetrico:

Densidad (SH), kg/ m3 =
$$\frac{997.5 \text{ A}}{(\text{B} + \text{S} - \text{C})}$$

Densidad (SH), kg/ m3 = $\frac{997.5 * (489.7)}{(650.7 + 500 - 961.7)}$ = 2584.53

Densidad (SH), lb/ pie3 =
$$\frac{62.27 * A}{(B + S - C)}$$
Densidad (SH), lb/ pie3 =
$$\frac{62.27 * (489.7)}{(650.7 + 500 - 961.7)} = 161.34$$

Nota 5: Las constantes utilizadas en las fórmulas de los numerales 8.3.1 a 8.3.3 (997.5 kg/m³ y 62.27 lb/pie³) corresponden a la densidad del agua a 23° C. Algunas autoridades consideran que el uso de la densidad del agua a 4° C (1000 kg/m³ y 62.43 lb/pie³) brinda suficiente exactitud en los resultados.

Densidad en condicion saturada y superficialmente seca (SSS)

Procedimiento gravimetrico:

Densidad SSS, kg/m3 =
$$\frac{997.5 * S}{(B + S - C)}$$
Densidad SSS, kg/m3 =
$$\frac{997.5 * 500}{(650.7 + 500 - 961.7)} = 2638.89$$

Densidad aparente

Procedimiento gravimetrico:

ABSORCIÓN

Absorcion, % =
$$\frac{S - A}{A}$$
 * 100
Absorcion, % = $\frac{500 - 489.7}{489.7}$ * 100 = 2.10%

Tabla 11 Granulometría de gruesos

	GRANULOMETRIA DE GRUESOS								
TAMIZ	Diametro (mm)	PESO RETENIDO (gr)	% RETENIDO	% RET ACUMULADO	% PASA	% Pasa (General)	PESO RETENIDO CORREGIDO	COEFICIENTE DE CORRECCIÓN	
1"	25.4	0	0	0	0	100	0	0.81752988	
3/4"	19.1	196.7	19.59163347	19.59163347	80.41%	80.41	0		
1/2"	12.7	628.8	62.62948207	82.22111554	17.78%	17.78	160.8081275		
3/8"	9.52	139.9	13.93426295	96.15537849	3.84%	3.84	514.0627888		
No 4	4.76	38.6	3.844621514	100	0.00%	100	114.3724303		
No 10	2	0	0	0	0.00%	100	31.55665339		
No 40	0.425	0	0	0	0.00%	100	0		
No 80	0.149	0	0	0	0.00%	100	0		
No 200	0.075	0	0	0	0.00%	100	0		
Fondo	0	0	0	0	0.00%	100	0		
TOTAL		1004	185.685				0		
	·					•	820.8		

Fuente: Autores

10.4 Densidad relativa (gravedad especifica) y absorción del agregado grueso

Densidad relativa (gravedad especifica) seca al horno (SH)

Donde:

A: Masa al aire de la muestra seca al horno, gr

B: Masa al aire de la muestra saturada y superficialmente seca, gr

C: Masa aparente de la muestra saturada en agua, gr

Densidad relativa (gravedad especifica) SH =
$$\frac{A}{B-C}$$

Densidad relativa (gravedad especifica) SH =
$$\frac{2997.3}{(3024 - 1320)}$$
 = 1.8

 Densidad relativa (gravedad especifica) en condicion saturada y supeficialmente seca (SSS).

Densidad relativa (gravedad especifica) SSS =
$$\frac{B}{B-C}$$

Densidad relativa (gravedad especifica) SSS =
$$\frac{3024}{(3024 - 1320)}$$
 = 1.8

Densidad relativa aparente (gravedad especifica aparente)

Densidad

Densidad en condicion seca al horno (SH).

Densidad (SH) kg/ m3 =
$$\frac{997.5 * 2997.3}{(3024 - 1320)}$$
 = 1754.58

Densidad (SH) lb/pie3 =
$$\frac{62.27 * 2997.3}{(3024 - 1320)}$$
 = 109.53

Densidad en condicion saturado y supeficialmente seca (SSS).

Densidad SSS, kg/m3 =
$$\frac{997.5 * B}{(B - C)}$$

Densidad SSS, kg/m3 =
$$\frac{997.5 * 3024}{(3024 - 1320)}$$
 = 1770,21

Densidad SSS, lb/pie3 =
$$\frac{62.27 * B}{(B - C)}$$

Densidad SSS, lb/pie3 = $\frac{62.27 * 3024}{(3024 - 1320)}$ = 110.51

Densidad aparente

Densidad aparente kg/m3 =
$$\frac{997.5 * A}{(A - C)}$$

Densidad aparente kg/m3 =
$$\frac{997.5 \times 2997.3}{(2997.3 - 1320)}$$
 = 1782.51

Nota 6: Las constantes utilizadas en las fórmulas de los numerales 8.2.1 a 8.2.3 (997.5 kg/m³ y 62.27 lb/pie³) corresponden a la densidad del agua a 23° C. Algunas autoridades consideran que el uso de la densidad del agua a 4° C (1000 kg/m³ y 62.43 lb/pie³) brinda suficiente exactitud en los resultados.

ABSORCION:

Absorcion % =
$$\frac{B - A}{A}$$
 * 100 %

Absorcion % =
$$\frac{3024 - 2997.3}{2997.3}$$
 * 100 % = **89**%

10.5 CARACTERIZACIÓN DE RAP

Una inspección visual preliminar al RAP utilizado, permite evidenciar que esta conserva en un alto porcentaje los agregados gruesos, lo cual demuestra las características favorables de estos ante la abrasión por el uso y fresado del material. El porcentaje de asfalto contenido en las muestras de RAP analizadas fue en promedio del 4.8 %. Los resultados detallados pueden ser observados en anexo

Los agregados extraídos de las muestras de RAP, clasifican como SP - ARENA MAL GRADADA, de acuerdo con el USCS. las proporciones de sus componentes se muestran a continuación.

Resultados del análisis de granulometría de agregados del RAP

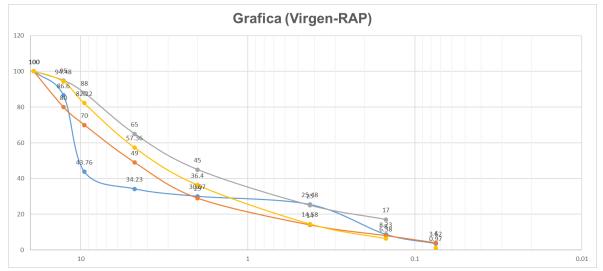
Agregado	Porcentaje (%)
Grava	17.78
Arena	81.24
Finos	0.97

Tabla 12 Granulometría del RAP

	GRANULOMETRIA DE RAP							
TAMIZ	Diametro (mm)	PESO RETENIDO (gr)	% RETENIDO	% RET ACUMULADO	% PASA	% Pasa (General)		
1"	25.4	0	0	0	0.00%	100		
3/4"	19.1	0	0	0	0.00%	100		
1/2"	12.7	134.8	5.516225396	5.516225396	94.48%	94.48		
3/8"	9.52	299.7	12.26418955	17.78041494	82.22%	82.22		
No 4	4.76	607.6	24.86393584	42.64435078	57.36%	57.36		
No 10	2	512	20.95183533	63.59618611	36.40%	36.4		
No 40	0.425	533.4	21.82755657	85.42374269	14.58%	14.58		
No 80	0.149	200.3	8.196587142	93.62032983	6.38%	6.38		
No 200	0.075	132.1	5.405737202	99.02606703	0.97%	0.97		
Fondo	0	23.8	0.97393297	100	0.00%	100		
TOTAL		2443.7	100			592.39		

Fuente: Autores

Grava	17.78%
Arena	81.24%
finos	0.97%

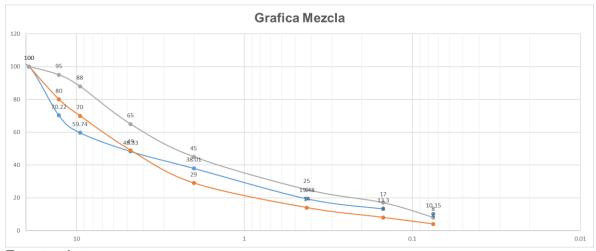

RAP

Cu 16,66666667 Cz 0,391851852

D10 0,45 D30 1,15 D60 7,5

Ilustración 1 Curva granulométrica – Agregados vírgenes - RAP

Fuente: Autores


se observó que la curva para agregados del RAP (línea amarilla) se encuentra muy dentro de los rangos establecidos por la norma (líneas de color morado y rojo), es decir corresponde a la gradación recomendada para este tipo de mezclas.

Caracterización de agregados en la mezcla asfáltica

La gradación de la mezcla final de agregados del RAP y agregados vírgenes se encuentran dentro de los parámetros establecidos en Artículo 450-13 Cap. 4 – Especificaciones generales de construcción de carreteras del INVIAS para concreto asfáltico, este resultado es esperado dado que la gradación de los dos materiales de forma aislada cumplen con los mismos requerimientos (ver ilustración 2).

Ilustración 2 Grafica de mezcla

Fuente: Autores

Caracterización de WEO

La siguiente caracterización, elaborada en laboratorio de la Universidad del Tolima (LIPFA), coincidente con el protocolo de ensayo de la *American Standard Testing of Materials*, permite establecer las requisitos particulares de la calidad del WEO empleado en este estudio

Tabla 4 – Valores reportados para WEO usado para los experimentos

Parámetros	Valores	Unidades	Norma ASTM
Densidad	875 +/- 4,20	Kg m ⁻³	D-1298
Gravedad API	901 +/- 14,1	-	D-1298
V. Cinemática 20°C	3,86 +/- 0,012	mm²s ⁻¹	D-445
Cenizas sulfatadas	0,334 +/- 0,005	% (p/p)	D-874
Humedad	0,10 +/- 0,001	% (v/v)	D-95
Sólidos 0,20 +/- 0,002	0,20 +/- 0,002	% (p/v)	D-9362
P. Inflamación	163 +/- 1	°C ´	D-92

Fuente: el autor.

10.6 CARACTERIZACIÓN DE MEZCLAS FINALES (PROPIEDADES FÍSICAS Y MECÁNICAS)

Para este ensayo, 3 briquetas tipo Marshall fueron elaboradas por cada mezcla y compactadas a 75 golpes por cada cara, siguiendo las especificaciones para elaboración de briquetas para prueba de estabilidad y flujo de mezclas asfálticas en caliente, empleando el equipo Marshall (INV E-748-13).

Tabla 13 Granulometría de mezcla

	GRANULOMETRIA DE MEZCLA								
Diametro (mm)	PESO RETENIDO (gr) Virgen	PESO RETENIDO (gr) RAP	PESO RETENIDO - MEZCLA	% RETENIDO	% RET ACUMULADO	% PASA	% PASA (GENERAL)		
25.4	0	0	0	0	0	0.00%	100		
19.1	160.8081275	0	160.8081275	8.710440239	0	0.00%	100		
12.7	514.0627888	35.64330256	549.7060914	29.77574662	29.77574662	70.22%	70.22		
9.52	114.3724303	79.24553247	193.6179627	10.48763965	40.26338627	59.74%	59.74		
4.76	49.93105694	160.6592777	210.5903346	11.40697646	51.67036273	48.33%	48.33		
2	55.12321065	135.3810898	190.5043005	10.31898294	61.98934567	38.01%	38.01		
0.425	200.9963381	141.0395963	342.0359344	18.52694645	80.51629212	19.48%	19.48		
0.149	61.22463473	52.96256307	114.1871978	6.185139881	86.701432	13.30%	13.3		
0.075	23.14333272	34.92937884	58.07271156	3.145605209	89.84703721	10.15%	10.15		
0	20.33808027	6.293105348	26.63118561	1.442522554	91.28955976	8.71%	8.71		
	1200	646.1538462	1846.153846						

Fuente: Autores

Caracterización de Asfalto Nuevo

Las propiedades del nuevo asfalto fueron proporcionadas mediante ficha técnica por Ecopetrol. Estas características se encuentran dentro de los rangos descritos en las especificaciones del cemento asfaltico con grado de penetración 40 - 50 tomadas como referencia para la evaluación del efecto de las diferentes inclusiones de WEO.

Tabla 5 – Caracterización del asfalto nuevo utilizado en los experimentos

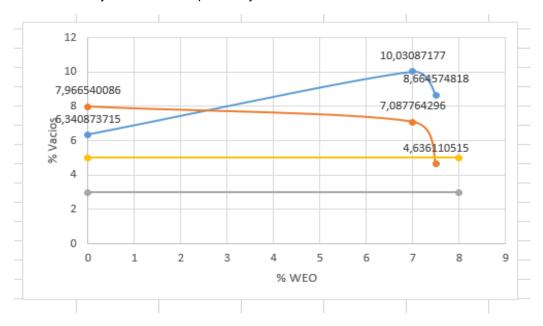
ANALISIS	UNIDAD	RESULTADO	ESPECIFICACION	METODO
CURVA REOLOGICA	f) la		1	
VISCOSIDAD A 60 C	cP .	200000	REPORTAR	ASTM D 4402
VISCOSIDAD A 80 C	cP	18813	REPORTAR	ASTM D 4402
VISCOSIDAD A 100 C	cP .	3175	REPORTAR	ASTM D 4402
VISCOSIDAD A 135 C	cP	355	REPORTAR	ASTM D 4402
VISCOSIDAD A 150 C	cP	171.2	REPORTAR	ASTM D 4402
DUCTILIDAD	cm	140	100 MINIMO	ASTM D 113 D
GRAVEDAD API/GRAVEDAD ESPECIF. EN CRUDOS		4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .		
GRAVEDAD API	Grados API	7.6	REPORTAR	ASTM D 4052
DENSIDAD A 15 °C	kg/m3	1016.6	REPORTAR	ASTM D 4052
INDICE DE PENETRACION CALCULADO				
PENETRACION A 25 C (77 F)	mm/10	63	60 MINIMO - 70 MAXIMO	ASTM D 5
INDICE DE PENETRACION	N/A	-1,2	REPORTAR	ASTM D 5
PERDIDA DE MASA (RTFOT)	g/100g	0,40	1,0 MAXIMO	ASTM D 2872
PUNTO ABLANDAMIENTO	°C	47.7	45 MINIMO - 55 MAXIMO	ASTM D 36
PUNTO DE INFLAMACION	°C	288	232 MINIMO	ASTM D 92
SOLUBILIDAD EN TRICLOROETILENO	%	99.9	99.0 MINIMO	ASTM D 2042
VISTO BUENO TANQUES				
VoBo	N/A	SI	REPORTAR	VISTO BUENO
COMENTARIO	N/A	NINGUNO	REPORTAR	VISTO BUENO

Fuente: Ecopetrol, reporte de resultados de ensayo de laboratorio

10.6.1 Vacíos con aire

Los datos arrojados fueron analizados con las especificaciones del Artículo 450-13 Cap. 4 — Especificaciones generales de construcción de carreteras del INVIAS, cumpliendo con los parámetros de vacíos con aire (V_A) %, para vias categoría NT1. Esta afirmación también es válida para las mezclas para capas intermedias, puesto que las especificaciones para estas son menos exigentes.

Tabla 14 Vacíos con aire


Tratamientos	Grupo Húmedo	Grupo Seco
0	6,340873715	7,966540086
7	10,03087177	7,087764296

7,5 8,664574818 4,636110515

Fuente: Autores

Ilustración 3. Porcentaje de vacíos VS porcentaje de WEO

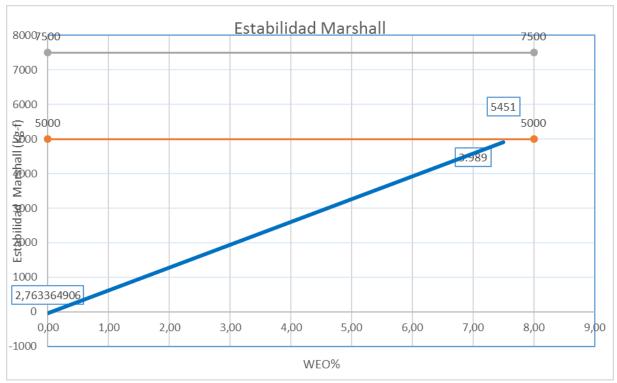
Fuente: Autores

Definiciones generales de construcción de carreteras del INVIAS declara: "el valor promedio de los vacíos con aire de las probetas se deberá encontrar en los limites establecidos en la Tabla 450-10, sin que ningún valor individual se pueda alejar en más de medio por ciento (0,5%)", lotes con inclusiones de WEO al 15% deben ser ignorados.

10.6.2 Estabilidad y Flujo

Tabla 15 Promedios

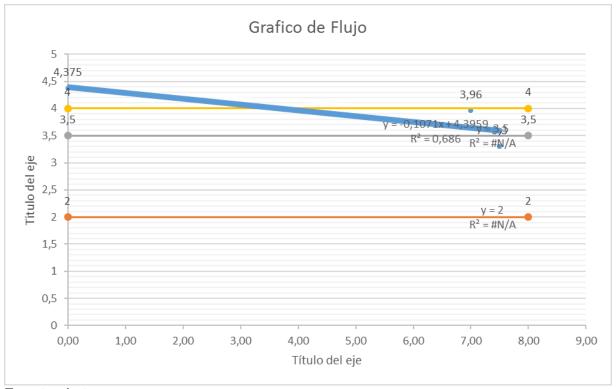
%WEO	PROMEDIO ESTABILIDAD	PROMEDIO FLUJO	PROMEDIO RELACION (ESTABILIDAD/FLUJO)
7.50	5016.720	3.317	1512.579
7.00	2735.236	4.375	625.197
0	2672.824	3.768	709.411


Estabilidad

Para este parámetro, la norma postula un valor mínimo aceptable para vías tipo NT1 es de 5,000N.

Es posible apreciar la conducta de esta característica en relación al aumento de %WEO, no obstante son representados los niveles mínimos permitidos por la especificación para cada uno de los tipos de vía NT1, NT2 y NT3.

Ilustración 4 Estabilidad MARSHALL

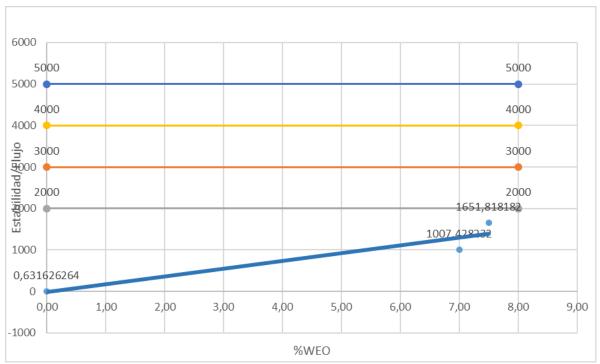

Fuente: Autores

De acuerdo con la expresión anterior, 7,46% es la cantidad optima de WEO posible adicionar de tal forma que la Estabilidad Marshall sea de 5.000N.

Flujo

La norma dispone que para esta variable el rango inferior aceptable, para las vías tipo NT1, NT2 y NT3, es de 2mm, y el rango superior máximo admisible es de 4mm para vías tipo NT1 y NT2, por otro lado que para el tipo de vía NT3 es de 3.5mm.

Ilustración 5 Grafico del flujo


Fuente: Autores

Se puede apreciar que el porcentaje 3,93% se ajusta con la especificacion de este parámetro para vías NT1 y NT2.

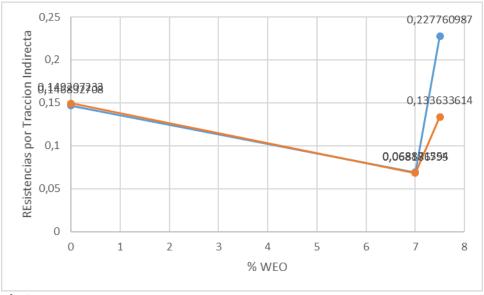
Relación Estabilidad y Flujo:

De acuerdo con la norma Artículo 450-13 de INVIAS, este parámetro debe estar en el limite [2, 4] para las vías tipo NT1.

Ilustración 6 Relación estabilidad-flujo

Fuente: Autores

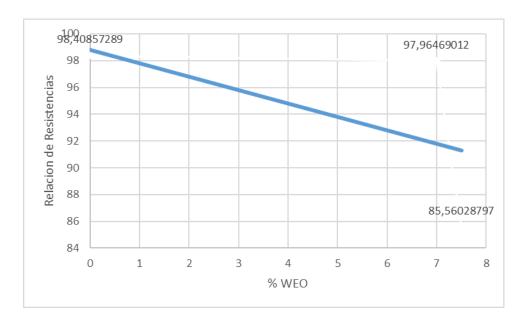
Los resultados permiten observar que los valores de los tratamientos la relación estabilidad – flujo para la mezcla de tratamientos de WEO están por debajo del límite establecido por la norma, donde la línea de tendencia refleja un porcentaje optimo cerca al 9% de inclusión de WEO



10.7 SUSCEPTIBILIDAD AL AGUA UTILIZANDO LA PRUEBA DE TRACCIÓN INDIRECTA

Los datos arrojados para las pruebas de tracción muestran que con cada añadidura de WEO, la resistencia a la tracción indirecta húmeda los tratamientos se comportan de una manera similar pero a la tracción indirecta seca con cada inclusión de WEO con el porcentaje de 7,5% dobla el aumento del 7%

	Resistencia	Resistencia
Tratamientos	Seca	Húmeda
0	0,146832708	0,149207233
7	0,068871554	0,068186795
7,5	0,227760987	0,133633614


Ilustración 7 Tracción indirecta (Húmeda y seca) y Relación tracción indirecta (RRT) para mezclas con RAP más WEO

Fuente: Autores

	Relación
Tratamientos	(Rth/Rts)
0	100,5505396
7	98,97037589
7,5	61,33616416

Ilustración 8 Relación de resistencia a tensión indirecta (RRT)

Fuente: Autores

10.8 Windepav

10.8.1 ModelaciònTratamiento 7%

MODELACIÓN WINDEPAV TRATAMIENTO 7%			
N°BRIQUETA	ESTABILIDAD	FLUJO	
1	8,798,162	136	
4	10,532,030	156	
5	13,861,070	100	

	ESTABILIDAD				
Libras		Newtons		kgf	
8798.162	4.448221	39136.169	9.81	3989.416	
10532.03	4.448221	46848.797	9.81	4775.616	
13861.07	4.448221	61657.103	9.81	6285.128	
			Promedio	5016.720	

	FLUJO	
Pulg	mm	mm
0.136	25.4	3.454
0.156	25.4	3.962
0.1	25.4	2.540
	Promedio	3.319

ructura - tratamiento 7%	
1.6 * Estabilidad * 100 Flujo	00

1.6 * 5016.720 * 100 = **241.842** kgf

10.8.2 Modelación tratamiento 7.5%

MODELACIÓN WINDEPAV TRATAMIENTO 7.5%			
N°BRIQUETA	ESTABILIDAD	FLUJO	
1	6,083,414	177	
2	5,946,355	168	
3	6,066,901	7600	

ESTABILIDAD				
Libras		Newtons		kgf
6083.414	4.448221	27060.370	9.81	2758.447
5946.355	4.448221	26450.701	9.81	2696.300
6066.901	4.448221	26986.916	9.81	2750.960
			Promedio	2735.236

	FLUJO	
Pulg	mm	mm
0.177	25.4	4.496
0.168	25.4	4.267
7.6	25.4	193.04
	Promedio	4.382

Estructura - tratamiento 7.5%

10.8.3 Modelación tratamiento control

MODELACIÓN WINDEPAV TRATAMIENTO CONTROL					
N°BRIQUETA	ESTABILIDAD FLUJO				
1	4,972,085	158			
2	6,910,719	141			
3	5,528,575	172			
4	5,322,162	139			
5	6,099,927	147			
6	7,784,260	133			

	ESTABILIDAD						
Libras		Newtons		kgf			
4972.085	4.448221	22116.933	9.81	2254.529			
6910.719	4.448221	30740.405	9.81	3133.579			
5528.575	4.448221	24592.323	9.81	2506.863			
5322.162	4.448221	23674.153	9.81	2413.267			
6099.927	4.448221	27133.823	9.81	2765.935			
7784.26	4.448221	34626.109	9.81	3529.675			
			Promedio	2767.308			

FLUJO					
Pulg	mm	mm			
0.158	25.4	4.0132			
0.141	25.4	3.5814			
0.172	25.4	4.3688			
0.139	25.4	3.5306			
	25.4	0			
	25.4	0			
	Promedio	2.582			

Estructura - tratamiento control

1.6	*	Estabilidad Flujo	*	100			
1.6	*	2767.308 2.582	*	100	=	171.483	kgf

10.8.4 Primera estructura modelada en el programa de WINDEPAV

PRIMERA ESTRUCTURA - Tratamiento 7%					
		_	cm		
$\mu = 0.35$	241.842	MDC	10		
$\mu = 0.35$	1000 kgf	BG	10		
$\mu = 0.35$	400 kgf	SR			

PRIME	ERA ESTRUCT	URA - Trata	ımiento 7.5%
			cm
$\mu = 0.3$	99.872	MDC	10
$\mu = 0.3$	35 1000 kgf	BG	10
$\mu = 0.3$	35 400 kgf	SR	

PRIMERA ESTRUCTURA - Tratamiento Control						
		<u></u>	cm			
$\mu = 0.35$	171.483	MDC	10			
$\mu = 0.35$	1000 kgf	BG	10			
$\mu = 0.35$	400 kgf	- SR				

10.8.5 Segunda estructura modelada en el programa de WINDEPAV

SEGUNDA ESTRUCTURA - Tratamiento 7%						
			cm			
	241.842	MDC	10			
$\mu = 0.35$	2500 kgf	BG	10			
$\mu = 0.35$	1000 kgf	ВС	10			
μ = 0.35	400 kgf	SR				

SEGUNDA ESTRUCTURA - Tratamiento 7.5%						
		_	cm			
	99.872	MDC	10			
$\mu = 0.35$	2500 kgf	- - BG	10			
$\mu = 0.35$	1000 kgf	- вс	10			
$\mu = 0.35$	400 kgf	SR				

SEGUNDA ESTRUCTURA - Tratamiento control					
			cm		
	171.483	MDC	10		
$\mu = 0.35$	2500 kgf	BG	10		
$\mu = 0.35$	1000 kgf	ь	10		
$\mu = 0.35$	400 kgf	SR			

10.8.6 Tercera estructura modelada en el programa de WINDEPAV

TERCERA ESTRUCTURA - Tratamiento 7%				
			cm	
	241.842	MDC	10	
$\mu = 0.35$	6250		10	
$\mu = 0.35$	2500	BG	10	
$\mu = 0.35$	1000 kgf		10	
$\mu = 0.35$	400 kgf	SR		
	-			

TERCERA ESTRUCTURA - Tratamiento 7.5%						
			cm			
	99.872	MDC	10			
$\mu = 0.35$	6250		10			
$\mu = 0.35$	2500	BG	10			
$\mu = 0.35$	1000 kgf		10			
$\mu = 0.35$	400 kgf	SR				

TERCERA ESTRUCTURA - Tratamiento control			
		_	cm
	171.483	MDC	10
$\mu = 0.35$	6250	_	10
$\mu = 0.35$	2500	BG	10
$\mu = 0.35$	1000 kgf	_	10
$\mu = 0.35$	400 kgf	SR	

11.CONCLUSIONES

Se deduce una significante diferencia en las propiedades físico-mecánicas de los agregados del RAP y las extraídas vírgenes. Esto exige tener en cuenta una correcta proporción de porcentajes para que no se vea afectada sus características al ser implementado en la subrasante.

De las granulometrías del material utilizado se evidencio una ausencia de finos para Virgen y gruesos para Virgen y RAP, lo cual nos expresa el motivo en la falta de resistencia para estabilidades por ensayo de Marshall y en parte resistencias por tracción indirecta.

Se observa una irregularidad en la consistencia de datos en laboratorio lo que nos exige usar un criterio practico-experimental para dar un correcto análisis gráfico y matemático.

Se elaboran las mezclas con diferencia en el % de WEO y se observan diferentes alteraciones tanto físicas, mecánicas y químicas.

Físicas Mejor manipulación de la mezcla

Apariencia más bituminosa

Mecánica

La mezcla se comporta mejor en cuanto al % de vacíos y su susceptibilidad con un % de WEO cercano al 2% y este desciende al aumentar dicho %

Químico

Favorece la propiedad ligante para la mezcla asfáltica

Aporta recuperación de propiedades y características asfálticas que se pierden con el desgaste y el pasar del tiempo en la estructura

12.RECOMENDACIONES

Al elaborar una mezcla asfáltica se debe tener todos los instrumentos de seguridad para evitar accidentes.

Los instrumentos de manipulación y medición deben estar limpios y calibrados.

En la elaboración de ensayos de laboratorio es favorecedor tener una temperatura ambiente.

Mejorar la viabilidad para obtener el material (agregados) y sus aspectos económicos dependiendo de la cantidad que se requiera para la investigación.

13.BIBLIOGRAFIA

- Gallego Quintana, P. J. (2017). Efecto del aceite quemado de motor sobre las propiedades físicas y mecánicas de mezclas asfálticas que contienen RAP.
- Hernández Hernández, P. J. ((2014)). Evaluación del comportamiento mecánico de mezclas asfálticas utilizando pavimento reciclado, ligantes hidráulicos y emulsiones asfálticas. bogota: Doctoral dissertation, Universidad Nacional de Colombia.
- Mineros, R. E., & Rodrigues Molina, J. A. (2004). evaluacion y rehabilitacion de pavimentos flexibles por el metodo del reciclaje.
- Rivetti, A. R. (2013). Practica Profesional Supervisada, Conservacion Mejorativa De Caminos Pavimentados Del Noreste., 1-44
- Montejo Fonseca, A. (2002). INGENIERIA DE PAVIMENTOS PARA CARRETERAS (Segunda Ed).
 - INVIAS. (2013). Capítulo 4 ART. 450 MEZCLAS ASFÁLTICAS EN CALIENTE DE GRADACIÓN CONTINUA (CONCRETO ASFÁLTICO). In

PAVIMENTOS ASFÁLTICOS (pp. 1-8).

INVIAS. (2013). Inv-E-733-13 GRAVEDAD ESPECÍFICA BULK Y DENSIDAD DE MEZCLAS ASFÁLTICAS COMPACTADAS NO ABSORBENTES EMPLEANDO ESPECIMENES SATURADOS Y SUPERFICIE SECA.

INVIAS. (2013). Normas de ensayo de materiales para carretera. I.N.V. E – 725
– 13. Evaluación de la susceptibilidad al agua de las mezclas asfálticas compactadas utilizando la prueba de tracción indirecta. Bogota (Colombia).

INVIAS. (2013). Normas de ensayo de materiales para carretera. I.N.V. E – 736
 – 13. Porcentaje de vacíos con aire en mezclas asfálticas compactadas densas y abiertas. Bogota (Colombia).

INVIAS. (2013). Normas de ensayo de materiales para carretera. I.N.V. E – 748
 – 13 Estabilidad y flujo de mezclas asfálticas en caliente empleando el equipo Marshall. Bogota (Colombia).

INVIAS. (2013). Normas de ensayo de materiales para carretera. I.N.V. E - 749 - 13. Ensayo de tensión indirecta para determinar el módulo resiliente de mezclas asfálticas. Bogotá.

https://www.autofacil.es/reportajes/2010/03/24/aceite-usado-motor-residuo-vidas/3491.html

http://elconcreto.blogspot.com/search/label/Agragado%20Grueso%20del%20Concreto

http://www.lanamme.ucr.ac.cr/sitio-nuevo/images/campanas/pavimentos-verdes/ficha-3.pdf

https://www.ecured.cu/Granulometr%C3%ADa

https://www.arghys.com/contenidos/pavimento-concepto.html

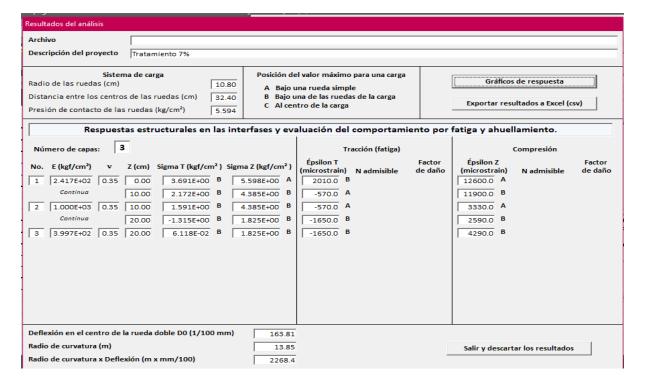
https://www.significados.com/viscosidad/

(https://www.larepublica.co/infraestructura/pavimentos-reciclados-economizan-los-arreglos-en-vias-2020075)

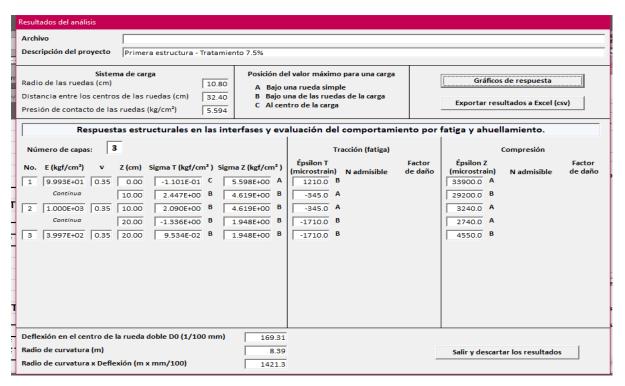
(http://www.cortolima.gov.co/boletines-prensa/qu-tanto-sabes-aceites-usados)

(ecos del combeima http://ecosdelcombeima.com/ibague/nota-119842-jaramillo-anuncia-la-intencion-de-un-nuevo-emprestito-construccion-de-vias-la-ciu)

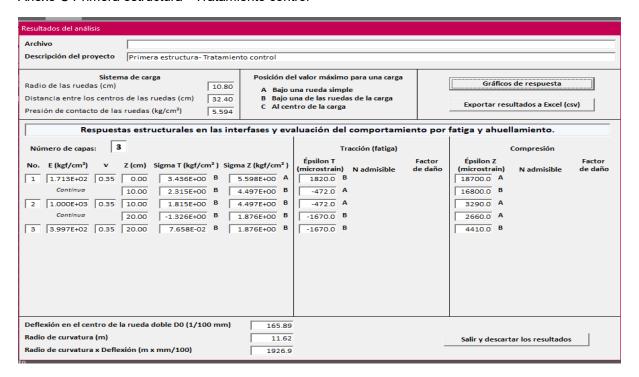
(el olfato http://www.elolfato.com/alcaldia-entregara-otros-25-000-millones-al-ejercito-para-la-reparacion-de-la-malla-vial-en-ibague/)


https://es.scribd.com/document/157723923/Trabajo-de-Windepav2-0

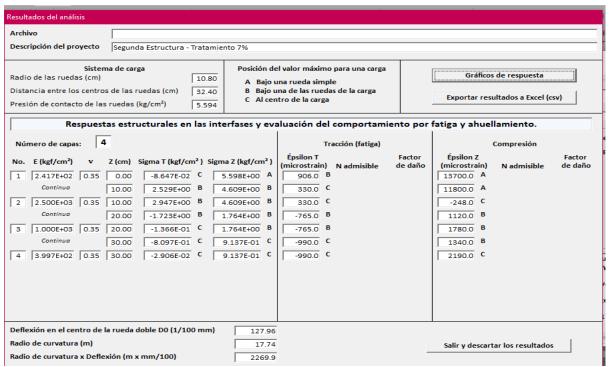
https://www.arrevol.com/blog/7-materiales-productos-reciclados-para-la-construccion-de-tu-vivienda


http://www.elsoldemargarita.com.ve/posts/post/id:146634/Dise%C3%B1osostenible-y-materiales-reciclados_-el-futuro-de-carreteras-europeas 14.ANEXOS

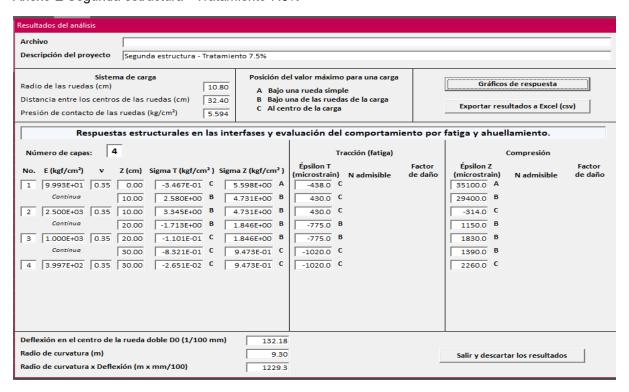
Anexo A Primera estructura- Tratamiento 7%



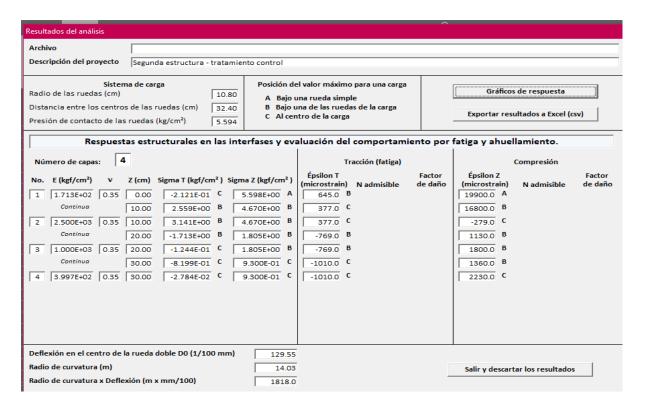
Anexo B Primera estructura - Tratamiento 7.5%



Anexo C Primera estructura - Tratamiento control

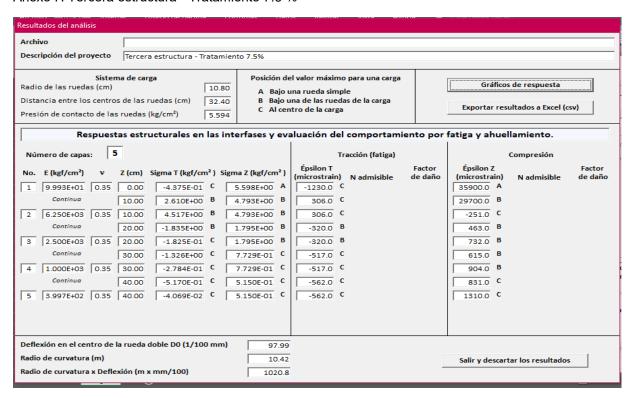


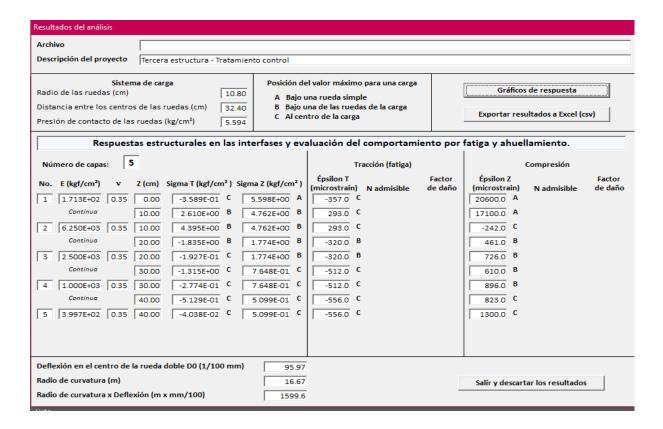
Anexo D Segunda estructura - Tratamiento 7%



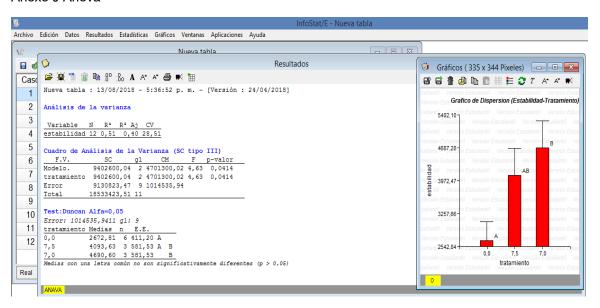
Anexo E Segunda estructura - Tratamiento 7.5%

Anexo F Segunda estructura - Tratamiento control

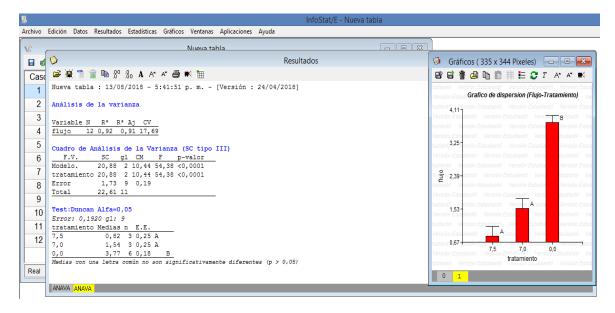



Anexo G Tercera estructura - Tratamiento 7%

Anexo H Tercera estructura - Tratamiento 7.5 %



Anexo I Tercera estructura - Tratamiento control



Anexo J Anova

Anexo K Post- Anova

Anexo L Tracción indirecta - Tratamiento 7%

Proyecto: Seminario Investigativo Pavimento Reciclable												
Aditivo: Aceite Quemado de Motor	Dosificación											
Método de compactación				Esfuerzo								
Fecha de ensayo												
Identificación de la muestra:												
identificación de la maestra.												
Especímenes	RUPO HÚ	MEDO		GRUPO SECO								
BRIQUETA		1	2	4		3	5	6				
Diámetro, mm (pg)	D	101.1	101.6	101.4	101.37	101.5	101.8	101.5	101.6			
Altura, mm (pg)	Т	63.3	63	63	63.1	63	62.3	62.3	62.533333			
Masa seca al aire	Α	1178.9	1174.7	1182.8	1178.8	1198.2	1200.3	1207	1201.8333			
Masa SSS	В	1184.2	1185.2	1184.5	1184.6	1148.5	1169	1208	1175.1667			
Masa en el agua	С	684	679.3	678.1	680.47	684.7	681.1	678.7	681.5			
Volumen (B-C)	E	500.2	505.9	506.4	504.17	463.8	487.9	529.3	493.66667			
Gravedad específica bulk (A/E)	F	2.35685726	2.322	2.3357		2.5834411	2.46014	2.28037				
Gravedad específica máxima	G	2.56	2.56	2.56		2.56	2.56	2.56				
% vacíos con aire (100(G-F)/G)	Н	7.93526339	9.2969	8.7616	8.6646	-0.915669	3.90097	10.923	4.6361105			
Volumen de vacíos con aire (HE/100)	I	39.6921875	47.033	44.369	43.698	-4.246875	19.0328	57.8156	24.200521			
Carga, N (lbf)	P					2802.3	2271.6783					
Saturación durante 5 Minutos por vacio a 70Kp	а											
Especimenes						PROM						
Masa SSS	В'	1184.4	1185.2	1184.5		1184.7						
Masa en el Agua	C'	687.3	683.7	700.5		690.5						
Volumen (cm3) (B'-C')	E'	497.1	501.5	484		494.2						
Volumen absoluto de agua (B'-A)	J'	5.5	10.5	1.7		5.9						
%Saturación (100J'/I)		13.8566311	22.325	3.8315		13.337665						
%Expansión (100(E'-E/E)		-0.6197521	-0.87	-4.4234		-1.970957						
Acondicionamiento durante 24 H en agua a 60C												
Altura,mm(pg) t"		64.3	63.8									
Masa SSS B"		1200.8										
Masa en el agua C''		700.3	701.1	699.3								
Volumen (B" - C") E"		500.5	507.8									
Volumen absoluto de agua (B - A) J"		21.9	34.2	27.1	•							
%Saturacion (100J"/I)		55.1745857	72.715									
%Expasión (100(E"-E)/E)		0.05997601	0.3756									
Carga, N(lbf) P"		1702.5			1338.6							
Resistencia seca 2000P/πtD (2P/πtD) Rts		0.19810133			0.2278							
Resistencia Humeda 2000P"/πt"D (2P"/πt"D)		0.16949607	0.119		0.1336							
RRT,100(Rth/Rts)		85.560288	58.611	39.838	61.336							
Daño por humedad (visual)												
agregados fracturados		<u> </u>		l								

Anexo M Tracción indirecta - Tratamiento 7.5%

Proyecto: Seminario Investigativo Pavimento Reciclable														
Aditivo: Aceite Quemado de Motor	Dosificación													
Método de compactación				Esfuerzo										
Fecha de ensayo														
Identificación de la muestra:														
Especímenes	MEDO			GRUP	O SECO									
BRIQUETA		1	2	4		3	5	6						
Diámetro, mm (pg)	D	101.1	100.8	101	100.97	101	100.5	100.8	100.76667					
Altura, mm (pg)	Т	62.1	61.7	61.7	61.833				62.366667					
Masa seca al aire	Α	1189.5	1182.1	1178.5	1183.4	1187.6	1179.6	1181.3	1182.8333					
Masa SSS	В	1192.3	1183.7	1181.8	1185.9	1195	1195	1195	1195					
Masa en el agua	С	672	663	681	672	702	699	692	697.66667					
Volumen (B-C)	E	520.3	520.7	500.8	513.93	493	496	503	497.33333					
Gravedad específica bulk (A/E)	F	2.28618105	2.27021	2.3532		2.4089249	2.37823	2.34851						
Gravedad específica máxima	G	2.56	2.56	2.56		2.56	2.56	2.56						
% vacíos con aire (100(G-F)/G)	Н	10.6960528	11.3198	8.0768	10.031	5.9013692	7.10055	8.26137	7.0877643					
Volumen de vacíos con aire (HE/100)	ı	55.6515625	58.9422	40.448	51.681	29.09375	35.2188	41.5547						
Carga, N (lbf)	Р					829.29	870.42	913.03						
Saturación durante 5 Minutos por vacio a 70Kp	a													
Especimenes						PROM								
Masa SSS	B'	1205	1195	1205		1201.6667								
Masa en el Agua	C'	675	687	694		685.33333								
Volumen (cm3) (B'-C')	E'	530	508	511		516.33333								
Volumen absoluto de agua (B'-A)	J'	15.5	12.9	26.5		18.3								
%Saturación (100J'/I)		27.8518685	21.8859	65.516		38.417743								
%Expansión (100(E'-E/E)		1.86430905	-2.43902	2.0367		0.487342								
Acondicionamiento durante 24 H en agua a 60C														
Altura,mm(pg) t"		61.8	61.6	61.4										
Masa SSS B"		1215.6	1205.5	1215.6										
Masa en el agua C''		678	673	660										
Volumen (B" - C") E"		537.6	532.5	555.6										
Volumen absoluto de agua (B - A) J"		2.8	1.6		prom									
%Saturacion (100J''/I)		5.03130528	2.71452		5.3015									
%Expasión (100(E''-E)/E)		3.3250048	2.26618	10.942	5.5112									
Carga, N(lbf) P"		656.68	747.02		672.84									
Resistencia seca 2000P/πtD (2P/πtD) Rts		0.06691034												
Resistencia Humeda 2000P"/πt"D (2P"/πt"D)		0.06665303			0.0682									
RRT,100(Rth/Rts)		99.6154398	99.331	97.965	98.97									
Daño por humedad (visual)														
agregados fracturados														

Anexo N Tracción indirecta - Tratamiento control

Proyecto: Seminario Investigativo Pavimento Reciclable																
Aditivo: Aceite Quemado de Motor		Dosificación														
Método de compactación				Esfuerzo												
Fecha de ensayo																
Identificación de la muestra:																
Especímenes			G	RUPO HÚMEI	00						GRUPO SECO)				
BRIQUETA		1	2	3	4	5	6		7	8	9	10	11	12		
Diámetro, mm (pg)	D	101.60	100.59	100.59	100.59	101.09	100.33	100.798333	101.35	101.35	101.35	101.8	100.83	101.09	101.29	
Altura, mm (pg)	Т	59.18	60.96	59.94	65.02	60.7	62.73	61.4216667	63.75	62.73	61.21	61.21	61.21	61.47	61.93	
Masa seca al aire	A	1140.2	1160.3	1139.7	1119.2	1155.6	1169.3	1147.38333	1228.3	1194.7	1186.7	1177.2	1178.7	1179.9	1190.9166	
Masa SSS	В	1131.2	1155.3	1143.7	1123.19	1158.6	1163.3	1143.4	1234.7	1200.1	1190.4	1182.3	1184.5	1182.6	1195.7666	
Masa en el agua	С	665	679	677.4	650	663.2	668.3	667.15	702	699	692	684	679	685	690.16666	
Volumen (B-C)	E	466.2	476.3	466.3	473.2	495.4	495	469.6	532.7	501.1	498.4	498.3	505.5	497.6	505.6	
Gravedad específica bulk (A/E)	F	2.44573145	2.4360697	2.44413468	2.36522327	2.33266048	2.36222222	2.44197861	2.30580064	2.38415486	2.38101926	2.36243227	2.33175074	2.37118167	2.3560565	
Gravedad específica máxima	G	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	
% vacíos con aire (100(G-F)/G)	Н	4.4636154	4.84102719	4.52598917	7.60846594	8.88045014	7.72569444	6.34087371	9.92966257	6.86895081	6.99143509	7.71748946	8.91598665	7.37571594	7.96654009	
Volumen de vacíos con aire (HE/100)	I	20.809375	23.0578125	21.1046875	36.0025	43.99375	38.2421875	30.5350521	52.8953125	34.4203125	34.8453125	38.45625	45.0703125	36.7015625	40.3981771	
Carga, N (lbf)	P	1583.65391	1473.4716	1463.19622	1073.88834	1582.186	1506.52185		1583.65391	1473.4716	1463.19622	1073.88834	1582.186	1506.52185	i	
Saturación durante 5 Minutos po																
Especimenes																
Masa SSS	B'	1143.1	1165.9	1156.4	1185.1	1159.8	1179.7	1165								
Masa en el Agua	C'	672.3	681.1	684	693.7	671.5	677	679.933333								
Volumen (cm3) (B'-C')	E'	470.8	484.8	472.4	491.4	488.3	502.7	485.066667								
Volumen absoluto de agua (B'-A)	J'	2.9	5.6	16.7	65.9	4.2	10.4	17.6166667								
%Saturación (100J'/I)		13.9360264	24.2867792	79.1293403	183.042844	9.54681063	27.195097									
%Expansión (100(E'-E/E)		0.98670099	1.78458954	1.30817071	3.84834844	-1.4331853	1.5555556									
	•														•	
Acondicionamiento durante 24 H en agua a 60C																
Altura,mm(pg) t"		59.2	60.9	60.1	65	60.8	62.9	61.4833333								
Masa SSS B"		1146.1	1167.9	1166.4	1196.1	1161.8	1184.79	1170.515								
Masa en el agua C"		675	689	687	700	676	677	684								
Volumen (B" - C") E"		471.1	478.9	479.4	496.1	485.8	507.79	486.515								
Volumen absoluto de agua (B - A) J"		-9	-5	4	4.0	3	-6	-1.50166667								
%Saturacion (100J"/I)		-43.2497372	-21.6846242	18.9531354	11.0825637	6.81915045	-15.6894791	-7.29483182								
%Expasión (100(E"-E)/E)		1.05105105	0.54587445	2.8093502	4.84160697	-1.93782802	2.58383838	1.64898217								
Carga, N(lbf) P"		1583.65391	1473.4716	1463.19622	1073.88834	1582.186	1506.52185	1447.15299								
Resistencia seca 2000P/πtD (2P/πtD) Rts		0.15603982	0.1475441	0.15015353	0.10971552	0.16320163	0.15434165	0.14683271								
Resistencia Humeda 2000P"/πt"D (2P"/πt"D)		0.16761928	0.15312594	0.15408217	0.10456108	0.16387959	0.15197533	0.14920723								
RRT,100(Rth/Rts)		93.0918096	103.783172	102.616418	104.929598	100.415411	98.4668289	100.55054								
Daño por humedad (visual)		N/R	N/R	N/R	N/R		N/R									
agregados fracturados		N/R	N/R	N/R	N/R	N/R	N/R									

Anexo O Análisis del concreto asfaltico por el método MARSHALL

ANALISIS DEL CONCRETO ASFALTICO POR EL METODO MARSHALL

Proyecto

Peso especifico agregados (Gagr): 2.56 Peso especifico Asfalto (Gasf): 1.01

	Probeta No.	% Asfalto	Espesor probeta Plg		PESO EN GRA	AMOS	PES	SOS ESPECIFI	cos	Asfalto absorbido	VOL	.UMEN - % TC	TAL	% Vacios en Agregados	% Asfalto	PESO UNITARIO	Medida Fa Tab q 3 3.9894158 9 4.77561641 5 6.28512769	TABILIDAD en Kilogramos			
			probeta Pig	Seca en Aire	S.S.S. en Aire	Peso en el Agua	Densidad "Bulk"	Maximo teorico	Max. Med o RICE	%	Agregados	Vacios con aire	Asfalto efectivo	Minerales	Efectivo	Lb/pie3	Medida	Factor K Tabla 748-1	Corregida	FLUJO mm	EstabilidadX Laboratorio
	a	b	С	d	е	f	g	h	i	j	k	_	m	n	0	р	q	r	S	t	v
	Fórmulas																				
			2.41		1154.1	671	2.404	2.386	2.496	1.941	89.401	3.684	6.916	10.599	-1.941	150.013	3.9894158	1.065	4.249	3.45	3,989
	4	4.8	2.4100																		
			2.43																		
			2.34	1148.5	1161.8	675	2.359	2.386	2.496	1.941	87.736	5.477	6.787	12.264	-1.941	147.219	4.77561641	1.1	5.253	3.96	4,776
7%	5	4.8	2.38																		
			2.36																		
			2.37		1149.5	667	2.390	2.386	2.496	1.941	88.895	4.228	6.876	11.105	-1.941	149.165	6.28512769	1.09	6.851	2.54	6,285
	1	4.8	2.38																		
			2.39																		
			2.5																		
	1	4.8	2.5	1193	1194.8	692	2.373	2.386	2.501	2.025	88.235	5.129	6.635	11.765	2.823	148.057	2.75844749	0.9986	2.755	4.49	2,758
			2.506																		
			2.5																		
.50%	2	4.8	2.519		1201.1	697	3.965	2.386	2.501	2.025	147.466	-58.556	11.089	-47.466	2.823	247.446	2.69629981	0.996	2.686	4.260	2,696
			2.5																		
		4.0	2.441	4400.2	4400.6	504	2 270	2 200	2 504	2.025	00.470	4.000	6.654	44 524	2 022	440.455	2.75005000	4 000	2.050	402.04	2.754
	3	4.8	2.444	1186.3	1189.6	691	2.379	2.386	2.501	2.025	88.479	4.868	6.654	11.521	2.823	148.466	2.75095988	1.036	2.850	193.04	2,751
			2.45				1]

Fotografía 5 Mezcla de agregados

Fuente: Autores

Fotografía 6 Toma de temperatura a briquetas

Fuente: Autores

Fotografía 7 Ensayo MARSHALL

Fuente: Autores

