ANÁLISIS DE ESTABILIDAD DEL TALUD Y OBRAS DE CONTENCIÓN NECESARIAS PARA EL DISEÑO Y CONSTRUCCIÓN DE UNA VÍA DE ORDEN SECUNDARIO EN EL MUNICIPIO DE DABEIBA-ANTIOQUIA

Astrid Liliana Hernández Chaverra & Yeny Alexandra Tamayo Ruiz.
Marzo 2019.

UNIVERSIDAD COOPERATIVA DE COLOMBIA.
Facultad de Ingenierías
Seminario Geotecnia Vial
2019
ANÁLISIS DE ESTABILIDAD DEL TALUD Y OBRAS DE CONTENCIÓN NECESARIAS PARA EL DISEÑO DE UNA VÍA DE ORDEN SECUNDARIO EN EL MUNICIPIO DE DABEIBA-ANTIOQUIA

SEMINARIO DE PROFUNDIZACIÓN EN GEOTÉCNIA VIAL

ASTRID LILIANA HERNÁNDEZ CHAVERRA
YENY ALEXANDRA TAMAYO RUIZ

Trabajo de grado presentado como requisito para obtener el título de Ingeniero Civil

UNIVERSIDAD COOPERATIVA DE COLOMBIA.
Facultad de Ingenierías
Seminario Geotecnia Vial
2019
NOTA DE ACEPTACIÓN

Firma del Jurado

Firma del Jurado
DEDICATORIA

Agradecemos a Dios por su inmensa bondad, pues siempre estuvo con nosotras en los momentos donde intentamos desfallecer y nos dio valor para seguir adelante.

A la familia y amigos que fueron fuente de apoyo incondicional en muchas etapas de nuestras vidas, que con relaciones, momentos y experiencias formaron nuestro carácter tanto personal como en nuestro ámbito profesional.

A la Universidad Cooperativa de Colombia, que junto a sus docentes y demás colaboradores ayudaron a forjar los conocimientos que a partir de este punto servirán para desenvolversemos en el campo profesional como ingenieros civiles.
TABLA DE CONTENIDOS

v

Listado de tablas .. vii
Listado de figuras .. viii
Listado de imágenes .. 1
RESUMEN ... 3
ABSTRACT ... 4
INTRODUCCIÓN .. 5
OBJETIVOS ... 6
General .. 6
Específicos .. 6
PLANTEAMIENTO DEL PROBLEMA .. 7
JUSTIFICACIÓN ... 8
Marco Teórico ... 9
Talud .. 9
Partes de un talud ... 9
Clasificación De Movimientos En Masa ... 10
Estabilidad De Taludes .. 16
El problema de La estabilidad de taludes .. 18
Modelos de estabilidad de taludes ... 18
Equilibrio límite ... 19
Condiciones drenadas y no drenadas .. 20
Definicion de carretera (vía) ... 21
Elementos estructurales de un pavimento .. 23
Métodos de diseño .. 25
METODOLOGÍA .. 27
LOCALIZACIÓN DE LA ZONA DE ESTUDIO .. 28
GEOLOGÍA REGIONAL ... 29
Clima y zonas de vida .. 30
Estratigrafía ... 30
Complejo Cañas gordas .. 31
Amenazas geológicas .. 31
Amenaza por inundación ... 31
Amenaza sísmica .. 32
ANÁLISIS MULTI TEMPORAL ... 32
DESCRIPTOR DEL PROYECTO ... 35
PLAN DE EXPLORACIÓN DEL SUBSUELO ... 36
CARACTERIZACIÓN DEL SUBSUELO ... 38
Propiedades físicas .. 38
Propiedades Mecánicas (Parámetros geotécnicos) .. 39
Resultados ensayo Corte Directo ... 42
PARAMETROS DE SISMO ... 43
ANÁLISIS DE ESTABILIDAD ... 44
parámetros de entrada ... 44
Perfiles estratigráficos ... 45
Factores de seguridad: .. 47
Estabilización perfil 3...38
RESULTADO DE ANALISIS ..55
EVALUACIÓN DE ESTABILIDAD ...56
DISEÑO DE LA VÍA ...57
PARÁMETROS DE DISEÑO ..58
 Tránsito de diseño ...58
 CBR de diseño ...59
 Coeficientes de capa – a ..62
 Condiciones de drenaje - m ..62
 Estructura de diseño ...64
CONCLUSIONES ..67
Lista de referencias ...68
ANEXOS ..69
Lista de tablas

Tabla 1. métodos de análisis .. ¡Error! Marcador no definido. 3
Tabla 2. Relación perforaciones por sección.. 36
Tabla 3. Propiedades físicas del suelo... 38
Tabla 4. correlación parámetros perforación 1.. 39
Tabla 5. correlación parámetros perforación 2.. 40
Tabla 6. correlación parámetros perforación 3.. 40
Tabla 7. correlación parámetros perforación 4.. 41
Tabla 8. Promedio correlaciones realizadas por el método Álvaro González.................. 42
Tabla 9. Resultados ensayo de corte directo... 42
Tabla 10. Promedio de los Resultados ensayo de corte directo y correlaciones A González...... 43
Tabla 11. resultados de análisis por perfil... 55
Tabla 12. Resumen de los suelos encontrados... 56
Tabla 13. Conteo de tránsito... 57
Tabla 14. Tránsito total... 57
Tabla 15. Resultados del CBR de laboratorio... 58
Tabla 16. Cálculo de porcentaje de valores.. 59
Tabla 17. Confiabilidad R.. 60
Tabla 18. Desviación estándar – So.. 60
Tabla 19. . Índice de Serviciabilidad - ΔPSI... 61
Tabla 20. Condiciones de drenaje – m.. 62
Tabla 21. Parámetros de diseño.. 62
Tabla 22. Alternativas de diseño pavimento flexible.. 63
Lista de figuras

Figura 1. Nomenclatura de taludes y laderas... 7

Figura 2. Partes generales de un talud o ladera.. 8

Figura 3. Esquema de Caídas.. 9

Figura 4. Procesos que conducen al Volcamiento o inclinación en materiales residuales.10

Figura 5. Esquema de proceso de reptación.. 12

Figura 6. Esquema Deslizamiento Rotacional... 13

Figura 7. Ejemplos de desplazamiento de traslación.. 13

Figura 8. Extensión lateral.. 14

Figura 9. Tipos de sagging o hundimientos por deformación geológica....................... 14

Figura 10. Hundimientos Confinados... 15

Figura 11. Estructura de un pavimento.. 23

Figura 12.
Lista de imágenes

Imagen 1. mapa de veredas y corregimientos municipio de Dabeiba..........................28

Imagen 2. Dabeiba-Antioquia. Localización General..29

Imagen 3. localización con respecto al país...30

Imagen 4. Análisis multitemporal 2003..33

Imagen 5. Análisis multitemporal 2008..33

Imagen 6. Análisis multitemporal 2013..34

Imagen 7 Análisis multitemporal 2013..34

Imagen 8. Dabeiba-Antioquia. Localización Geográfica...35

Imagen 9. Dabeiba-Antioquia. Localización del proyecto..35

Imagen 10. Definición de perfiles..45

Imagen 11. perfil 1 en condiciones naturales...45

Imagen 12. perfil 2 en condiciones naturales...46

Imagen 13. perfil 3 en condiciones naturales...46

Imagen 14. perfil 2 en condiciones naturales...47

Imagen 15. perfil 2 en condiciones naturales...47

Imagen 16. perfil 1 con carga en condiciones estáticas..48

Imagen 17. perfil 1 con carga en condiciones dinámicas..48

Imagen 18. perfil 2 en condiciones estáticas...49

Imagen 19. perfil 2 en condiciones dinámicas...49

Imagen 20. perfil 2 con carga en condiciones estáticas...50

Imagen 21. perfil 2 con carga en condiciones dinámicas..50

Imagen 22. perfil 3 en condiciones estáticas...51
Imagen 23. perfil 3 en condiciones dinámicas

Imagen 24. perfil 3 con carga en condiciones estáticas

Imagen 25. perfil 3 con carga en condiciones dinámicas

Imagen 26. Detalle de muro de contención propuesto

Imagen 27. perfil 3 con obras de estabilización

Imagen 28. perfil 3 con obras de estabilización en condiciones estáticas

Imagen 29. perfil 3 con obras de estabilización en condiciones dinámicas

Imagen 30. Cálculo del tránsito

Imagen 31. Determinación CBR diseño

Imagen 32. Cálculo de la estructura del pavimento

Imagen 33. Diseño de la estructura del pavimento flexible
RESUMEN

El presente trabajo tiene como finalidad realizar un análisis de estabilidad del talud y obras de contención necesarias para el diseño de una vía de orden secundario en el Municipio de Dabeiba, Antioquia ubicada en el PR 0+020.078. Con base en este análisis se pretende establecer la solución más adecuada para los problemas de este tramo específico.

Para hacer una correcta evaluación de la zona en estudio se hizo una recopilación de información topográfica, geológica y geomorfológica que permitió modelar de manera certera el talud en estudio, utilizando el software Slide ®.

Una vez concluido el estudio de la zona se realizó un análisis de las posibles alternativas de solución que pueden aplicar para lograr una correcta estabilización del talud y realizar la propuesta del diseño de la vía.
ABSTRACT

The purpose of this work is to perform a slope stability analysis and containment works necessary for the design of a secondary order road in the Municipality of Dabeiba, Antioquia, located at PR 0+020.078, based on this analysis, we intend to establish the most appropriate solution for the problems of this specific section.

In order to make a correct evaluation of the study area, a compilation of topographic, geological and geomorphological information will be made that allows us to accurately model the study slope; software Slide ® will be used.

Once the study of the area was completed, an analysis was made of the possible alternative solutions that can be applied to achieve a correct stabilization of the slope and make the proposed design of the road.
INTRODUCCIÓN

En el transcurso de los años se ha intensificado el estudio de los movimientos en masa, en especial de deslizamientos producidos por la combinación de una serie de factores naturales tales como la topografía, sismicidad, meteorización, lluvias intensas entre otros y de factores antrópicos como la carencia de sistemas de drenajes, sobrecarga de viviendas, desforestación, sobrecarga de animales de ganadería, mala disposición de residuos sólidos y escombros) Este tipo de movimientos son los más presenciados en zonas tropicales y su análisis se basa en la recopilación de parámetros geométricos, geotécnicos, geológicos, geomorfológicos e hidrológicos para simular las condiciones de taludes o laderas en un modelo representativo deducido de perfiles topográficos y estratigráficos.

Dentro del análisis y la modelación se tiene en cuenta un factor de seguridad, el cual determina el grado de estabilidad del talud mediante la relación entre los momentos y las fuerzas que tratan de desestabilizar o deslizar la masa de suelo y las fuerzas que tratan de estabilizar o garantizar la resistencia al corte en cada uno de los estratos que componen el suelo. (Jaime Suarez Diaz, 1998) (Sanhueza Plaza & Rodriguez Cifuentes, 2013) (De Matteis, 2003; Pérez de Ágreda, 2005).

La investigación contempló un estudio geotécnico de estabilidad de los taludes sobre los cuales se construirá una vía de orden secundario en el Municipio de Dabeiba-Antioquia, con el análisis de parámetros como la geología de la zona de estudio, los perfiles estratigráficos, delimitación y perfiles topográficos del talud entre otros, con estos parámetros se realizó una modelación en el Software Slide ® con las condiciones similares a las presenciadas actualmente en los taludes de la zona de estudio.

Finalmente con el fin de conocer las implicaciones técnicas asociadas a la pavimentación de vías de segundo orden este trabajo se basó en diseñar la estructura de pavimento de una vía de orden secundario en el municipio de Dabeiba, para ello y con el fin de establecer parámetros de selección se diseñó la estructura de pavimento usando los métodos AASHTO 93 e INSTITUTO DEL ASFALTO, identificando en cada una la estructura de pavimento más óptima.
OBJETIVOS

General

Realizar el diseño de una vía de orden secundario en el Municipio de Dabeiba, mediante métodos Aashto 93 e Instituto Del Asfalto, teniendo en cuenta el análisis geotécnico de la zona de estudio.

Específicos

Evaluar la estabilidad de los taludes considerando las fuerzas que actúan sobre ellos y las futuras condiciones a las que estarán sometidos.

Diseñar la estructura del pavimento para la vía a construirse.

Proponer obras de contención que se requieran para el desarrollo del proyecto.

Presentar con base en los resultados de los análisis y diseños las recomendaciones que permiten garantizar el buen funcionamiento de la vía.
PLANTEAMIENTO DEL PROBLEMA

El municipio de Dabeiba se encuentra modernizando las vías de acceso permitiendo así que la gran mayoría de las vías que comunican con el occidente Antioqueño mejoren la movilidad y accesibilidad para su población, es necesario mencionar que los congestionamientos, y los índices de accidentes son producto de factores sociales, económicos que no han permitido abarcar y mejorar el sistema vial, lo que conlleva a realizar acciones que garanticen buenas condiciones de fluidez vial.

Esta vía es de gran importancia para el desarrollo económico y turístico de la región, ya que se encuentra en un punto estratégico que conecta con otros municipios que impulsan este desarrollo.

Teniendo en cuenta lo anterior, se presenta la oportunidad de aportar al municipio el diseño de la estructura de pavimento flexible por medio de los métodos AASHTO 93 e Instituto del asfalto para una vía de orden secundario en el municipio de Dabeiba, localizada en el PR 0+020.078 que comprende dos secciones con retornos Norte-Sur que beneficiará a los habitantes, transportadores y comerciantes, para ofrecer vía más segura y cómoda.
JUSTIFICACION

El municipio de Dabeiba hace parte del corredor Occidente-Urabá y su economía se basa en la agricultura, explotación forestal, minería, ganadería y artesanía lo que motiva a mantener en perfecto estado sus vías de acceso, especialmente el eje carreterable que lo comunica con Urabá y Medellín; Por lo tanto se hace necesario realizar los estudios pertinentes para el diseño y construcción de la vía de orden secundario ubicada el PR 0+020.078 y plantear una alternativa que cumpla con las normas y especificaciones técnicas de diseño, e involucra minimizar costos de operación y mantenimiento.

Son muchas las ventajas analizadas costo-beneficios que obtendría el municipio una vez se culmine la obra del tramo de vía en estudio tanto para el sector del comercio y turístico como de los mismos habitantes, motivo por el cual se hizo necesario proponer solución para una vía proyectada a 10 años de vía útil y segura.

Los recursos se tienen asegurados con aportes y convenios interadministrativos entre el municipio, departamento y nación con vigencias del año en curso, lo que hace viable, convenientes y oportuno gestionar el inicio de las obras.
MARCO TEÓRICO

Talud

Un Talud o ladera es una masa de tierra que no es plana, sino que presenta una pendiente o cambios significativos de altura. En la literatura técnica se define como Ladera cuando su conformación actual tuvo como origen un proceso natural y Talud cuando se conformó artificialmente (Figura 1). Los taludes se pueden agrupar en tres categorías generales: los terraplenes, los cortes de laderas naturales y los muros de contención. Se pueden presentar combinaciones de los diversos tipos de taludes y laderas. Las laderas o taludes que han permanecido estables por muchos años, pueden fallar debido a cambios topográficos, sísmicos, a los flujos de agua subterránea, a los cambios en la resistencia del suelo, la meteorización o a factores de tipo antrópico o natural que modifiquen su estado natural de estabilidad. Un talud estable puede convertirse en un Deslizamiento.

Partes de un talud

Existen algunos términos para definir las partes de un talud. El talud comprende una parte alta o superior convexa con una cabeza, cima, cresta o escarpe, donde se presentan procesos de denudación o erosión; una parte intermedia semi-recta y una parte baja o inferior cóncava con un pie, pata o base, en la cual ocurren principalmente procesos de depositación (Figura 1).

Figura 1. Nomenclatura de taludes y laderas.
En un talud o ladera se definen los siguientes elementos constitutivos:

- **Pie, pata o base.** El pie corresponde al sitio de cambio brusco de la pendiente en la parte inferior del talud o ladera. La forma del pie de una ladera es generalmente cóncava.

- **Cabeza, cresta, cima o escarpe.** Cabeza se refiere al sitio de cambio brusco de la pendiente en la parte superior del talud o ladera. Cuando la pendiente de este punto hacia abajo es semi-vertical o de alta pendiente, se le denomina Escarpe. Los escarpes pueden coincidir con coronas de deslizamientos. La forma de la cabeza generalmente es convexa.

- **Altura.** Es la distancia vertical entre el pie y la cabeza, la cual se presenta claramente definida en taludes artificiales, pero es complicada de cuantificar en las laderas debido a que el pie y la cabeza generalmente no son accidentes topográficos bien marcados.

- **Altura de nivel freático.** Es la distancia vertical desde el pie del talud o ladera hasta el nivel de agua (la presión en el agua es igual a la presión atmosférica). La altura del nivel freático se acostumbra medirla debajo de la cabeza del talud.

- **Pendiente.** Es la medida de la inclinación de la superficie del talud o ladera. Puede medirse en grados, en porcentaje o en relación m:1, en la cual m es la distancia horizontal que corresponde a una unidad de distancia vertical. Ejemplo: $45^\circ = 100\% = 1H:1V$. Los suelos o rocas más resistentes generalmente forman laderas de mayor pendiente y los materiales de baja resistencia o blandos, tienden a formar laderas de baja pendiente.

Clasificación De Movimientos En Masa

Caída: Son movimientos en caída libre de distintos materiales tales como rocas, detritos o suelos. Este tipo de movimiento se origina por el desprendimiento del material de una superficie inclinada, el cual puede rebotar, rodar, deslizarse o fluir ladera abajo. Ocurre en forma rápida sin dar tiempo a eludirlas.
Inclinación o volcamiento: Este tipo de movimiento consiste en una rotación hacia adelante de una unidad o unidades de material térrico con centro de giro por debajo del centro de gravedad de la unidad. Generalmente, los volcamientos ocurren en las formaciones rocosas, pero también, se presentan en suelos cohesivos secos y en suelos residuales (Figura 4).

Se pueden diferenciar tres tipos de volcamiento:

Volcamiento a flexión: Columnas continuas se rompen y separam unas de otras en flexión a medida que se inclinan hacia adelante (Figura 4).
Volcamiento en V invertida: Consiste en la inclinación múltiple de una serie de bloques con centro de giro en la superficie inferior del sistema de volcamiento, el cual puede convertirse en una superficie de falla.

Flexión en bloque. Flexión continua de columnas largas a través de desplazamientos acumulados a lo largo de las numerosas juntas.

Reptación (creep): La reptación o creep consiste en movimientos del suelo sub-superficial desde muy lentos a extremadamente lentos sin una superficie definida de falla. La profundidad del movimiento puede ser desde pocos centímetros hasta varios metros.

Generalmente, el desplazamiento horizontal es de unos pocos centímetros al año y afecta a grandes áreas de terreno (Figura 5). La reptación puede preceder a movimientos más rápidos como los flujos o deslizamientos translacionales. La reptación comúnmente ocurre en las laderas con pendiente baja a media. Se le atribuye a las alteraciones climáticas relacionadas con los procesos de humedecimiento y secado en los suelos, usualmente arcillosos, muy blandos o alterados, con características expansivas.

Figura 5. Esquema de proceso de reptación.

deslizamiento rotacional: En un desplazamiento rotacional, la superficie de falla es cóncava hacia arriba y el movimiento es rotacional con respecto al eje paralelo a la superficie y transversal al deslizamiento. El centro de giro se encuentra por encima del centro de gravedad del cuerpo del movimiento. Visto en planta, el deslizamiento de rotación posee una serie de agrietamientos concéntricos y cóncavos en la dirección del movimiento. El movimiento produce un área superior de hundimiento y otra inferior de deslizamiento, lo cual genera, comúnmente, flujos de materiales por debajo del pie del deslizamiento (Figura 6). La cabeza del movimiento bascula hacia atrás y los árboles se inclinan, de forma diferente, en la cabeza y en el pie del deslizamiento.
Deslizamiento de traslación: En el desplazamiento de traslación la masa se desliza hacia afuera o hacia abajo, a lo largo de una superficie más o menos plana o ligeramente ondulada y tiene muy poco o nada de movimiento de rotación o volteo (Figura 7). Los movimientos traslacionales generalmente, tienen una relación Dr/Lr de menos de 0.1. En muchos desplazamientos de traslación, la masa se deforma y/o se rompe y puede convertirse en flujo, especialmente en las zonas de pendiente fuerte.
Extensión lateral: Se denomina extensión o esparcimiento lateral a los movimientos con componentes, principalmente laterales, en taludes de baja pendiente. En los esparcimientos laterales el modo del movimiento dominante, es la extensión lateral acomodada por fracturas de corte y tensión (sobre roca o sobre suelos plásticos). Las extensiones laterales ocurren comúnmente en las masas de roca, sobre suelos plásticos o finos, tales como arcillas y limos sensitivo que pierden gran parte de su resistencia al remoldearse.

![Figura 8. Extensión lateral](image1)

Hundimientos: Los hundimientos son movimientos generalmente verticales de masas de suelo, en las cuales ocurre una disminución del volumen general del terreno. Los procesos de hundimiento de gran magnitud se clasifican como parte de los movimientos en masa o deslizamientos, aunque para su ocurrencia, la presencia de un talud no es necesariamente un pre-requisito. Pueden ser de gran magnitud o relativamente pequeños. Los hundimientos obedecen a diferentes causas naturales.

Hundimientos por deformación geológica (Sagging): Los hundimientos por deformación geológica conocidos en la nomenclatura internacional como sagging (Hutchinson, 1988), consisten en deformaciones profundas, en gran escala, bajo la influencia de la gravedad. Se presentan en macizos de roca aparentemente competente donde han ocurrido procesos internos de cambio de esfuerzos. En la Figura 9, se muestran los principales tipos de sagging.

![Figura 9. Tipos de sagging o hundimientos por deformación geológica.](image2)
Depresión por Subsidencia (Formación de cavernas y sinkholes): La subsidencia consiste en el hundimiento generalizado del terreno. Los movimientos masivos de subsidencia se dan desde muy lentos a rápidos y pueden estar relacionados con diversas causas naturales entre las cuales se encuentran las formaciones solubles o kársticas y la explotación de aguas subterráneas. Las calizas y dolomitas son rocas carbonatadas, solubles y muy susceptibles a la descomposición química. La meteorización química produce vacíos o cavernas dentro de la formación rocosa, que pueden ser de gran tamaño. El hundimiento o colapso del techo de estas cavernas produce deslizamientos por hundimiento. El resultado puede ser la generación de una dolina o sinkhole.

Hundimientos y desplazamientos confinados por cambio de presiones de poros: Con relativa frecuencia ocurren hundimientos y desplazamientos dentro del terreno, en condiciones confinadas o semi-confinadas, sin que se presenten superficies de falla completas como se indica en la Figura 10. Estos desplazamientos obedecen a deformaciones o reacomodo interno de las partículas al aumentar la presión de poros o disminuir las tensiones negativas. En este tipo de movimiento del terreno se presentan agrietamientos, hundimientos y levantamientos del terreno. El caso más común es el de los rellenos detrás de los muros de contención.

![Figura 10. Hundimientos Confinados.](image)

Hundimiento de terraplenes: Existe una tendencia de los terraplenes a experimentar cambios de volumen y asentamiento o hundimiento. Generalmente, estos movimientos del talud están relacionados con deficiencias en el proceso de compactación, la falta de confinamiento lateral, o el asentamiento co-sísico. El hundimiento puede ser un asentamiento general del suelo de cimentación por debajo del terraplén. Con frecuencia,
los hundimientos de terraplenes generan agrietamientos longitudinales, los cuales eventualmente pueden inducir deslizamientos de los taludes laterales. Si el terraplén se encuentra sobre suelos licuables se puede producir su colapso en un sismo de gran magnitud.

Estabilidad De Taludes

Factores que pueden producir fallas en los taludes.

La mayoría de los taludes son aparentemente estables y estáticos, pero realmente son sistemas dinámicos en evolución. Un talud estable puede desestabilizarse con el tiempo y la ocurrencia de un deslizamiento es un fenómeno propio de ese proceso. Por lo tanto, se requiere conocer detalladamente lo que ocurre dentro de un talud para poder diagnosticar correctamente su comportamiento. Este diagnóstico es un aspecto fundamental en la ciencia de la estabilidad de los taludes. Si el diagnóstico es equivocado, las medidas correctivas o los procedimientos de estabilización fracasarían.

Previamente al diseño de las medidas correctivas, se debe tener un conocimiento completo de la magnitud de la amenaza, las causas y los mecanismos que la generan. Para elaborar un concepto de falla se requiere el conocimiento de la geología, la mecánica de suelos, la hidrología y las características ambientales del sitio, entre otros elementos fundamentales.

Hidrología: Especialmente las precipitaciones y el clima juegan un papel determinante en la estabilidad de los taludes. La presencia o ausencia de agua y temperatura, definen las condiciones para los procesos de meteorización (Conjunto de procesos externos que provocan la alteración y descomposición de minerales y rocas en contacto con la atmósfera) física y química. De igual manera, las variaciones en el clima afectan los procesos. Los taludes bajo diferentes condiciones climáticas forman perfiles diferentes que se comportan de forma diferente. Las fuerzas que actúan dentro de un talud cambian al modificarse las condiciones ambientales.

Efectos del Agua: La mayoría de las fallas de los taludes están relacionadas de una u otra forma, con el agua. El agua juega un papel muy importante en la mayoría de los procesos que reducen la resistencia del suelo. Igualmente, está relacionada con varios tipos de carga que aumentan los esfuerzos en los taludes, actuando como un elemento detonante debido a los siguientes efectos:

Aumento de peso del suelo. Los sedimentos tienen porosidades altas y cuando los vacíos se llenan de agua, el peso unitario aumenta considerablemente.
Disminución de la resistencia por el agua absorbida. Debido a las fuerzas electroquímicas, el agua es absorbida fácilmente y se adhiere a los bordes y caras de las partículas de arcilla causando la disminución de la resistencia.

Disolución. El agua al fluir a través de los poros, puede disolver los minerales que unen las partículas, disminuyendo la resistencia y haciendo más fácil el colapso.

Erosión interna. El agua al fluir puede generar pequeñas cavernas, las cuales pueden inducir la falla.

Sismicidad: La sismicidad de las zonas montañosas comúnmente es alta. La mayoría de las cadenas de montañas son el producto de los procesos tectónicos o volcánicos. Los movimientos sísmicos a su vez, pueden activar los deslizamientos de tierra.

En el caso de un sismo, existe el triple efecto de, aumento del esfuerzo cortante, disminución de la resistencia por aumento de la presión de poros y la deformación, todos asociados con la onda sísmica. En el caso de suelos granulares saturados, se puede llegar a la licuación. Los sismos producen aceleraciones horizontales y verticales sobre los taludes, los cuales resultan en variaciones de esfuerzos colocados en forma rápida. Las fuerzas dinámicas que actúan sobre el talud pueden causar inestabilidad momentánea.

La ocurrencia de deslizamientos de gran magnitud en sismos, es muy frecuente, como ya se dijo los sismos pueden aumentar los esfuerzos y reducir la resistencia de los suelos, generando una falla progresiva o instantánea del talud, los deslizamientos son generalmente poco profundos, pero cubren áreas relativamente grandes. Después de ocurrido el sismo se continúan presentando deslizamientos aislados de materiales que fallan en un proceso más lento.

Cuando se produce la fractura de la roca en una zona de falla geológica, la energía liberada es radiada en todas las direcciones. La fuente del movimiento o zona de liberación de energía no es generalmente un punto, sino una línea o un área comúnmente alargada en la dirección de la falla. La profundidad del foco o hipocentro determina en buena parte, la magnitud del sismo y sus efectos (Figura). Los sismos que generalmente producen un mayor daño son los sismos relativamente superficiales.

El área de superficie inmediatamente encima del área de liberación de energía, se denomina epicentro o área epicentral. La gran mayoría de los grandes deslizamientos y agrietamientos del suelo, de gran magnitud, corresponden al área epicentral y van disminuyendo a medida que el punto considerado se aleja del área epicentral y la intensidad del sismo disminuye. Existen dos parámetros importantes para designar el tamaño y la fuerza de un sismo, la magnitud que mide la energía del sismo y la intensidad que valora los efectos en el sitio. En la figura N°3 se detallan las partes de un sismo.
El problema de La estabilidad de taludes

El problema de estabilidad de taludes puede ser abordado desde distintos aspectos. Cuando se habla de estabilidad, se trata de encontrar la altura crítica del talud o la carga de colapso aplicada sobre una porción del talud, para una geometría y características de suelo dados. Evaluar la estabilidad de un talud implica un estudio en el cual se debe, entre otros eventos: caracterizar la resistencia del suelo, establecer el perfil del talud así como las condiciones de filtración y agua subterránea, seleccionar una superficie de deslizamiento o falla y calcular su factor de seguridad, finalmente, a partir de este factor de seguridad (el cual se elige con base al destino del talud) se deberá determinar la superficie de falla crítica. Más allá del problema de la modelación material del suelo, está presente el problema del estudio de los criterios de evaluación de sistemas estructurales. En este sentido es necesario, una vez calibrados y verificado la capacidad predictiva de los modelos computacionales desarrollados, llevar a cabo análisis computarizados de sistemas estructurales que involucren complejidades relevantes, frente a acciones estáticas y dinámicas a fin de contribuir al avance del conocimiento en lo referente a la formulación de criterios de diseño más eficientes y realistas. Dentro de este marco, se estudió el comportamiento de suelos cohesivo-friccionales con distintos niveles de humedad y condiciones de borde.

Modelos de estabilidad de taludes

Para el estudio de la estabilidad de un talud se hace uso de un factor de seguridad (FS), el cual se obtiene de un análisis matemático de estabilidad. Este debe tener en cuenta factores como la geometría del talud, parámetros geológicos, cargas sísmicas, flujo de agua, propiedades gravimétricas de los suelos entre otras. Aunque es una herramienta muy veraz para el Ingeniero no todos los factores que afectan la estabilidad de un talud se pueden cuantificar, tales como la acción antropogénica, para incluirlos en un modelo matemático. Por lo tanto hay situaciones y debilidades en los modelos que no permiten la obtención de resultados satisfactorios. (Suarez Diaz, Control de erosion en zonas tropicales, 2001)

Se pueden estudiar superficies planas, circulares, logarítmicas, parabólicas y combinaciones de ellas. La mayoría de los trabajos que aparecen en la literatura sobre el tema asumen que el suelo es un material isotrópico y han desarrollado métodos de análisis de superficies circulares o aproximadamente circulares principalmente. Sin embargo, el mecanismo de falla en materiales residuales, donde aparece el suelo, la roca meteorizada y la roca sana, así como formaciones aluviales y coluviales noisotrópicas requieren de nuevos enfoques y del estudio de superficies de falla no simétricas. En los últimos años se han desarrollado algunos modelos de superficies de falla con forma no geométrica, pero se requiere todavía de un gran
Los métodos de equilibrio límite para el cálculo de estabilidad de taludes son los más utilizados en la práctica común, debido a su sencillez, y porque el valor del coeficiente de seguridad obtenido no dista demasiado del valor real. El método del equilibrio límite establece que la rotura del terreno se produce a través de una línea que representa la superficie de rotura. De esta forma, se interpreta que la masa de terreno por encima de dicha línea se desplaza respecto la masa inferior, produciéndose, así, la rotura del terreno. En el momento de producirse la rotura, la resistencia al corte a lo largo de la superficie de deslizamiento está movilizada, y el terreno se encuentra, en su totalidad, en equilibrio estático.

En la siguiente tabla se hace una breve descripción de los métodos de análisis de estabilidad de taludes, los supuestos, el equilibrio y los diferentes tipos de superficies de fallas que contemplan:

<table>
<thead>
<tr>
<th>Método</th>
<th>Superficies de falla</th>
<th>Equilibrio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fellenius 1927)</td>
<td>Circulares</td>
<td>De fuerzas</td>
</tr>
<tr>
<td>(Bishop 1955)</td>
<td>Circulares</td>
<td>De momentos</td>
</tr>
<tr>
<td>(Janbú 1968)</td>
<td>Cualquier forma de superficie de falla</td>
<td>De fuerzas</td>
</tr>
<tr>
<td>Modificado. U.S. Anny Corps of Engineers (1970)</td>
<td>Cualquier forma de superficie de falla</td>
<td>De fuerzas</td>
</tr>
<tr>
<td>Lowe y Karafiath (1960)</td>
<td>Cualquier forma de superficie de falla</td>
<td>De fuerzas</td>
</tr>
<tr>
<td>Spencer (1967)</td>
<td>Cualquier forma de superficie de falla</td>
<td>Momentos y fuerzas</td>
</tr>
<tr>
<td>Morgenstem y Price (1965)</td>
<td>Cualquier forma de superficie de falla</td>
<td>Momentos y fuerzas</td>
</tr>
<tr>
<td>Sarma (1973)</td>
<td>Cualquier forma de superficie de falla</td>
<td>Momentos y fuerzas</td>
</tr>
<tr>
<td>Elementos finitos</td>
<td>Cualquier forma de superficie de falla</td>
<td>Analiza esfuerzos y deformaciones</td>
</tr>
<tr>
<td>Espiral- Logarítmica</td>
<td>Espiral- Logarítmica</td>
<td>Momentos y fuerzas</td>
</tr>
</tbody>
</table>

Tabla 1 métodos de análisis, elaboración propia
El Factor de Seguridad es empleado por los Ingenieros para conocer cuál es el factor de amenaza de que el talud falle en las peores condiciones de comportamiento para el cual se diseña. Fellenius (1927) presentó el factor de seguridad como la relación entre la resistencia al corte real, calculada del material en el talud y los esfuerzos de corte críticos que tratan de producir la falla, a lo largo de una superficie supuesta de posible falla:

\[FS = \frac{Resistencia al corte}{Esfuerzo al cortante} \] (ec.1)

En superficies circulares donde existe un centro de giro y momentos resistentes y actuantes:

\[FS = \frac{Momento resistente}{Momento actuante} \] (ec.2)

Existen, además, otros sistemas de plantear el factor de seguridad, tales como la relación de altura crítica y altura real del talud y método probabilístico.

La mayoría de los sistemas de análisis asumen un criterio de “equilibrio límite” donde el criterio de falla de Coulomb es satisfecho a lo largo de una determinada. Se estudia un cuerpo libre en equilibrio, partiendo de las fuerzas actuantes y de las fuerzas resistentes que se requieren para producir el equilibrio. Calculada esta fuerza resistente, se compara con la disponible del suelo o roca y se obtiene una indicación del Factor de Seguridad.

Otro criterio es el de dividir la masa a estudiar en una serie de tajadas, dovelas o bloques y considerar el equilibrio de cada tajada por separado. Una vez realizado el análisis de cada tajada se analizan las condiciones de equilibrio de la sumatoria de fuerzas o de momentos.

\[FS = \frac{\Sigma Resistencia al corte}{\Sigma Esfuerzo al cortante} \] (ec.3)

Condiciones drenadas y no drenadas

Las condiciones drenadas o no drenadas pueden originar fallas en los taludes. Cuando ocurren cambios en la carga, tal como la remoción de materiales de la parte baja del talud o aumento de las cargas en la parte superior, cuando se trata de suelos puramente arcillosos con muy baja permeabilidad no se consta de un tiempo suficiente para drenar el agua mientras se aplica la carga sobre el talud es por esto que en este caso el talud trabaja en condición no drenada.

Para ratas normales de carga, que equivalen a meses o semanas, suelos con permeabilidades mayores de 10–4 cm/seg., se pueden considerar drenadas y suelos con
permeabilidades menores de 10-7 cm/seg., se consideran no drenadas. Mientras las permeabilidades intermedias se consideran parcialmente drenadas.

Para determinar las condiciones de drenaje Duncan (1996) sugiere utilizar la siguiente expresión:

\[
T = \frac{C_v t}{D^2} \quad (ec.4)
\]

Dónde:

- \(T \) = Factor adimensional
- \(C_v \) = Coeficiente de consolidación
- \(t \) = Tiempo de drenaje
- \(D \) = Longitud del camino de drenaje o distancia de salida del agua al cambio de presiones.

Si \(T \) es mayor de 3 la condición es drenada.
Si \(T \) es menor de 0.01 la condición es no drenada.
Si \(T \) está entre 0.01 y 3.0 ocurre drenaje parcial durante el tiempo de cambio de cargas.
En este caso deben analizarse ambas condiciones. El caso drenado y el caso no drenado.

Definición de carretera (vía)

Una carretera o vía es una ruta de transporte de dominio y uso público, proyectada y construida fundamentalmente para la circulación de vehículos automóviles. Existen diversos tipos de carreteras, aunque coloquialmente se usa el término carretera para definir a la carretera convencional que puede estar conectada, a través de accesos, a las propiedades colindantes, diferenciándolas de otro tipo de carreteras, las autovías y autopistas, que no pueden tener pasos y cruces al mismo nivel. Las carreteras se distinguen de un simple camino porque están especialmente concebidas para la circulación de vehículos de transporte.

En las áreas urbanas las vías divergen a través de la ciudad y se les llama calles teniendo un papel doble como vía de acceso y ruta. La economía y la sociedad dependen fuertemente de unas carreteras eficientes. En la Unión Europea el 44 % de todos los productos son movidos por camiones y el 85 % de los viajeros se mueven en autobús o en coche.

El numeral 1.2 denominado clasificación de las carreteras, contenido en el Manual de Diseño Geométrico de Carreteras del 2008, adoptado como Norma Técnica para los proyectos de la Red Vial Nacional, mediante la Resolución número 0744 del 4 de marzo del 2009, establece la clasificación de las carreteras según su funcionalidad y según el tipo de terreno; el cual especifica:

Según su funcionalidad
Determinada según la necesidad operacional de la carretera o de los intereses de la nación en sus diferentes niveles:

Primarias

Son aquellas troncales, transversales y accesos a capitales de Departamento que cumplen la función básica de integración de las principales zonas de producción y consumo del país y de éste con los demás países. Este tipo de carreteras pueden ser de calzadas divididas según las exigencias particulares del proyecto.

Las carreteras consideradas como Primarias deben funcionar pavimentadas.

Secundarias

Son aquellas vías que unen las cabeceras municipales entre sí y/o que provienen de una cabecera municipal y conectan con una carretera Primaria. Las carreteras consideradas como Secundarias pueden funcionar pavimentadas o en afirmado.

Terciarias

Son aquellas vías de acceso que unen las cabeceras municipales con sus veredas o unen veredas entre sí. Las carreteras consideradas como Terciarias deben funcionar en afirmado. En caso de pavimentarse deberán cumplir con las condiciones geométricas estipuladas para las vías Secundarias.

Según el tipo de terreno

Determinada por la topografía predominante en el tramo en estudio, es decir que a lo largo del proyecto pueden presentarse tramos homogéneos en diferentes tipos de terreno.

Terreno plano

Tiene pendientes transversales al eje de la vía menores de cinco grados (5°). Exige el mínimo movimiento de tierras durante la construcción por lo que no presenta dificultad ni en su trazado ni en su explanación. Sus pendientes longitudinales son normalmente menores de tres por ciento (3%).

Conceptualmente, este tipo de carreteras se definen como la combinación de alineamientos horizontal y vertical que permite a los vehículos pesados mantener aproximadamente la misma velocidad que la de los vehículos livianos.

Terreno ondulado

Tiene pendientes transversales al eje de la vía entre seis y trece grados (6° - 13°). Requiere moderado movimiento de tierras durante la construcción, lo que permite alineamientos más o menos rectos, sin mayores dificultades en el trazado y en la explanación. Sus pendientes longitudinales se encuentran entre tres y seis por ciento (3% - 6%).
Conceptualmente, este tipo de carreteras se definen como la combinación de alineamientos horizontal y vertical que obliga a los vehículos pesados a reducir sus velocidades significativamente por debajo de las de los vehículos livianos, sin que esto los lleve a operar a velocidades sostenidas en rampa por tiempo prolongado.

Terreno montañoso

Tiene pendientes transversales al eje de la vía entre trece y cuarenta grados (13° - 40°). Generalmente requiere grandes movimientos de tierra durante la construcción, razón por la cual presenta dificultades en el trazado y en la explanación. Sus pendientes longitudinales predominantones se encuentran entre seis y ocho por ciento (6% - 8%).

Conceptualmente, este tipo de carreteras se definen como la combinación de alineamientos horizontal y vertical que obliga a los vehículos pesados a operar a velocidades sostenidas en rampa durante distancias considerables y en oportunidades frecuentes.

Terreno escarpado

Tiene pendientes transversales al eje de la vía generalmente superiores a cuarenta grados (40°). Exigen el máximo movimiento de tierras durante la construcción, lo que acarrea grandes dificultades en el trazado y en la explanación, puesto que generalmente los alineamientos se encuentran definidos por divisorias de aguas. Generalmente sus pendientes longitudinales son superiores a ocho por ciento (8%).

Conceptualmente, este tipo de carreteras se definen como la combinación de alineamientos horizontal y vertical que obliga a los vehículos pesados a operar a menores velocidades sostenidas en rampa que en aquellas a las que operan en terreno montañoso, para distancias significativas y en oportunidades frecuentes."

Elementos estructurales de un pavimento

Se puede considerar que la estructura de un pavimento está formada por una superestructura encima de una fundación, esta última debe ser el resultado de un estudio geotécnico adecuado. En los pavimentos camineros, la superestructura está constituida por la capa de revestimiento y la capa base; la fundación está formada por las capas de sub-base y suelo compactado.

![Figura 11. Estructura de un pavimento](image)
Sección típica de un pavimento flexible

- Capa de Rodadura
- Capa Base
- Capa Sub-base
- Suelo Compactado (Terraplén o Subrasante mejorada)
- Subrasante
- Sub-drenaje longitudinal

Funciones de la capa de rodadura

- Impermeabilizar el pavimento, para que las capas subyacentes puedan mantener su capacidad de soporte.
- Proveer una superficie resistente al deslizamiento, incluso en una pista húmeda.
- Reducir las tensiones verticales que la carga por eje ejerce sobre la capa base, para poder controlar la acumulación de deformaciones plásticas en dicha capa.
- Mejorar la capacidad estructural

Funciones de la capa base

- Reducir las tensiones verticales que las cargas por eje ejercen sobre las capas sub-base y suelo natural.
 - Reducir las deformaciones de tracción que las cargas por eje ejercen a la capa de revestimiento asfáltico.
 - Permitir el drenaje del agua que se infiltra en el pavimento, a través de drenajes laterales longitudinales.

Funciones de la capa subbase

La capa sub-base está constituida por un material de capacidad de soporte superior a la del suelo compactado y se utiliza para permitir la reducción del espesor de la capa base. La capa de suelo reforzado, puede estar presente en una estructura de pavimento, para
poder reducir el espesor de la capa sub-base.

Subrasante mejorada

El suelo compactado o subrasante mejorada, es el mismo suelo del terraplén, que esta escarificado y compactado una cierta profundidad dependiendo de su naturaleza o de las especificaciones del proyecto.

Métodos de diseño

Método AASHTO – 1993

El método de diseño AASHTO, originalmente conocido como AASHO, fue desarrollado en los Estados Unidos en la década de los 60, basándose en un ensayo a escala real realizado durante 2 años en el estado de Illinois donde los suelos y climas son típicos para gran parte de Estados Unidos, esto con el fin de desarrollar tablas, gráficos y fórmulas que representen las relaciones deterioro-solicitación de las distintas secciones ensayadas. A partir de la versión del año 1986, y su correspondiente versión mejorada de 1993, el método AASHTO comenzó a introducir conceptos mecanicistas para adecuar algunos parámetros a condiciones diferentes a las que imperaron en el lugar del ensayo original. El método AASHTO-1993 para el diseño de pavimentos flexibles, se basa primordialmente en identificar un “número estructural (SN)” para el pavimento, que hace referencia a la resistencia estructural de un pavimento requerido para una combinación de soporte del suelo (Mr), transito total (W18), de la serviciabilidad terminal y de las condiciones ambientales.

Una vez determinado el número estructural requerido se busca un conjunto de espesores que combinados adecuadamente y teniendo en cuenta parámetros como los coeficientes estructurales y de drenajes garanticen un número estructural efectivo mayor o igual al requerido para soportar las solicitudes de transito esperadas en el periodo de diseño.

Método INVIAS para carreteras con medios y altos volúmenes de tránsito

El método INVIAS está basado en una combinación de métodos y la teoría fundamental de comportamiento de estructuras y materiales. Las cartas para la determinación de los espesores de las estructuras se desarrollaron con base en el Método AASHTO. El catalogo cubre los tipos de pavimentos, suelos, materiales que actualmente se utilizan en el diseño y construcción de vías en el país. El diseño considera condiciones ambientales como la temperatura media anual que se puede presentar desde menos de 13 o hasta 30 ºC y la precipitación media anual que varía desde menos 2000 a mayor a 4000 mm; en el caso de la resistencia a la subrasante se considera el valor promedio del suelo predominante en cada sector homogéneo definido y establece diferentes categorías que inician desde suelos con CBR menores a 3% que requieren la estabilización del suelo o el reemplazo parcial, o hasta suelos con un CBR mayor a 15%. El siguiente parámetro que
evalúa el Método INVIAS es el tránsito de diseño que corresponde al número de ejes equivalente de 8.2 Ton en el carril de diseño durante el periodo de diseño del pavimento que varía desde 0.5 E6 hasta 40 E6 el cual posteriormente para garantizar una confiabilidad del 90% se mayor por 1.159, lo que nos brinda el tránsito de diseño. Definida la región climática, la categoría de la subrasante y de transito se determina de las sies (6) cartas de diseño que presenta el manual cual es la que corresponde a estas características y se procede a observar los espesores de las capas de pavimento recomendados. 3.1.3 Método del Instituto del Asfalto El método del Instituto del Asfalto considera al pavimento como como un sistema elástico multicapa (Capa de rodadura y base de concreto asfáltico, capa de rodadura y bases con emulsiones asfálticas, así como capa de rodadura asfáltica con base y subbase granulares), en los cuales se utilizan conceptos teóricos, experimentales, resultados de ensayos de laboratorios y programas de computador que permiten optimizar los espesores de la estructura de pavimento y el chequeo del cumplimiento de los criterios de fatiga y ahueamiento.

El dimensionamiento de la estructura de pavimento que se diseñe debe cumplir que las deformaciones por tracción producidas en la fibra inferior de las capas asfálticas y las deformaciones verticales por compresión en la parte superior de la subrasante no superen los valores admisibles dados por el tránsito de diseño que debe soportar la estructura para el periodo de servicio definido. Le primer parámetro a evaluar para el diseño es el Modulo Resiliente (Mr) el cual cuantifica la capacidad de soporte de la subrasante y en este trabajo se utilizara como 100 * CBR de cada tramo homogéneo, posteriormente se estima el número acumulado de ejes simples equivalentes de 8.2 Ton, esperado en el carril de diseño durante el periodo de diseño, posteriormente se calculan los módulos de la mezcla asfáltica y de la capa granular donde se requiere conocer el tipo de asfalto a utilizar, los espesores de la estructura de pavimento y la temperatura de la zona. Posteriormente mediante el programa Weslease realiza el chequeo de por ahuelamiento y fisuramiento de la estructura donde se verifica que los ejes equivalentes de diseño no superen los admisibles. Los métodos descritos anteriormente mencionan términos que a continuación se describen para permitir claridad en el desarrollo de este trabajo, una estructura de pavimento es un conjunto de capas superpuestas, normalmente carpeta asfáltica y granulares, que se diseñan y construyen técnicamente con materiales apropiados y adecuadamente compactados. Los materiales granulares son agregados naturales clasificados o provenientes de la trituración de rocas o gravas usados para conformar las capas de apoyo sobre las cuales se construye la carpeta asfáltica.
METODOLOGÍA

Para la evaluación geológica y geotécnica de la zona de estudio, se adoptó la siguiente metodología:

Recolección de información básica: recopilación de la información disponible concerniente a topografía, geología, geomorfología, hidrografía e hidrología de la zona donde se ubica el proyecto. Posteriormente, se analiza el material recolectado y se procede a la interpretación para adoptar una metodología de trabajo

Exploración de Campo: Tiene como objetivo la caracterización de los tipos de suelos, acción de las corrientes de agua, determinación de los procesos morfodinámicos que ocurren en la zona, determinación de características geológicas y geotécnicas de interés y evaluación preliminar de las condiciones de la estabilidad del terreno, de ensayos de penetración estándar (S.P.T.) y posición del nivel freático.

Ensayos de laboratorio: realización de los ensayos de laboratorio a las muestras obtenidas en campo, con el fin de determinar las propiedades físicas y mecánicas del suelo encontrado en la zona para definir el modelo y los parámetros de resistencia para el análisis geotécnico.

Análisis de resultados: análisis de los resultados obtenidos y las recomendaciones de cimentación y obras de contención, los procesos constructivos de dichas obras y las conclusiones.

Para el diseño de la vía se adoptó la siguiente metodología:

Recopilación de información general
Revisión de la información recopilada
Número de ejes equivalentes de 8.2 ton para el periodo de diseño
Clasificación de la capacidad portante de la subrasante
Diseño de estructura de pavimento flexible bajo el método AASHTO 93
Recomendación de estructura de pavimento para el tramo de vía en estudio.

Para la determinación de los espesores de las capas que conformará la estructura del pavimento flexible se empleará la metodología AASHTO en su versión 1993. La metodología AASHTO está basada primordialmente en identificar o encontrar un “número estructural SN” que pueda soportar el nivel de carga solicitado.
LOCALIZACIÓN DE LA ZONA DE ESTUDIO

El municipio de Dabeiba comprende un área de 1883 km2 en una topografía quebrada y de pendientes superiores al 50% de su área. Se reparte en 4 corregimientos, 84 veredas y 30 asentamientos indígenas, y el casco urbano con 14 barrios. Su cabecera municipal tiene una altitud de 465 m sobre el nivel del mar y una temperatura promedio de 27° C. Dabeiba limita por el norte con los municipios de Ituango y Mutatá, por el Oriente con los municipios de Peque y Uramita, por el sur con el municipio de Frontino y por el occidente con el municipio de Murindó y el departamento de Chocó.

La extensión total es de 1883 km2, la cabecera municipal se encuentra a 450 m.s.n.m y la temperatura media es de 27º C. La distancia del municipio a la ciudad de Medellín es de 206 km. Las actividades económicas del municipio se concentran en la agricultura con productos como el frijol, tomate y maracuyá, y la ganadería. En la imagen 3 se presenta una vista general del municipio de Dabeiba.

La principal vía de acceso al área es la denominada carretera al mar, la cual se encuentra en buen estado y pavimentada, comunica la Ciudad de Medellín con Urbá y atraviesa el área diagonalmente de SE a NW, de ésta se desprenden carreteras secundarias a los municipios de Frontino, Nutibara, Uramita, Peque y San José de Urama-Camparrusia. El área occidental tiene una baja infraestructura vial, aunque existen caminos que permiten el ingreso a todos los sectores, siendo la zona de más difícil acceso el sector occidental de los ríos Amparradó y Choromandó (Mejía & Salazar, 1989).

La carencia de una red adecuada de carreteras obliga en muchas áreas a realizar el ingreso por caminos de herradura utilizando como medio de transporte mulas o a pie y se debe levantar campamentos flotantes que permitan llegar a los sitios más distantes.

Imagen 1, mapa de veredas y corregimientos municipio de Dabeiba
GEOLOGÍA REGIONAL

El área que contempla este proyecto corresponde a una sola zona geomorfológica que comprende el núcleo y la vertiente Oeste de la Cordillera Occidental caracterizada por una topografía montañosa, quebrada, de ríos encañonados con pequeños valles intra cordilleranos aislados y alargados en el sentido de las fallas geológicas.

De acuerdo a Mejía & Salazar (2007) el área se encuentra en la cuenca del Río Sucio, está cubierta de pastos y bosques; los drenajes son prolongados requiriendo 50 km de E a W para bajar al nivel de 350 m.s.n.m. en el extremo Norte del Río Sucio (A-3). Esta unidad la subdividen en varias subunidades:

La mitad oriental al E de Dabeiba; entre Dabeiba y el río Amparradó al Norte del río Togoridó; el SW de la Plancha 114, cuenca de los ríos Pegadó, Chaquenodá y Jenaturadó y al W del río Amparradó hasta el Batolito de Mandé.

Al este de Dabeiba, el control estructural de la litología se evidencia en los rasgos morfológicos del área, además, buena parte del drenaje está controlado por fallas geológicas, encontrando que muchos de los cauces secundarios corren en el sentido del tren estructural N-S.

Mejía & Salazar (2007) descreiben y denominan “Domo de San Pablo”, a la estructura rodeada por los ríos Urama, Uramita y Sucio al borde Este de Dabeiba; allí se forma un macizo semicircular donde el drenaje se dispone de forma radial entre 2200 m.s.n.m. y 450 m.s.n.m. Parcialmente esta estructura semicircular se debe a control estructural de fallas, específicamente en la zona norte, pero al interior de la estructura morfológica el tren estructural litológico es continuo en dirección N-S.
Clima y zonas de vida

Por tratarse de una zona montañosa con importantes diferencias altitudinales, se caracteriza por una variedad climática con temperaturas de 10 a 12°C en las partes más altas hasta 34°C en las vecindades de la cabecera municipal de Dabeiba. Al igual que el clima, el área se caracteriza por la variedad en la vegetación y zonas de vida (Figura 6). En la zona central y en las cuencas de los ríos Sucio, Urama y Verde hay bosque seco tropical, con un promedio anual de lluvias entre 1.000 y 2.000 mm, allí se localiza la mayor población cuya actividad principal es la ganadería y la agricultura y ha desaparecido casi por completo el bosque primario.

El término “Zonas de vida” se toma del trabajo de Espinal (1977), teniendo en cuenta los factores que influyen en el clima como son: la temperatura, la lluvia, los vientos y la humedad. Las principales zonas de vida (Figura 4) que aparecen en el área son:

- Bosque seco tropical (bs-T).
- Bosque húmedo tropical (bh-T).
- Bosque muy húmedo tropical (bmh-TY).
- Bosque muy húmedo premontano (bmh-PM).
- Bosque pluvial premontano (bp-PM).
- Bosque muy húmedo montano bajo (bmh-MB)

Estratigrafía
En el área afloran rocas ígneas, sedimentarias y rocas de falla. Las unidades principales corresponden al Complejo Cañasgordas, constituido por bloques tectónicos de diabasas y basaltos, paquetes de chert y calizas y bloques de lodolitas, limolitas y arenitas líticas; Complejo Santa Cecilia-La Equis constituido por rocas piroclásticas, derrames de lavas basálticas y andesíticas y tufas; el Batolito de Mande y plutones menores como la Monzonita de Nudillales, la Formación Guineales y depósitos cuaternarios de vertiente, aluviales y terrazas conforman la geología de este municipio.

Complejo Cañas gordas

Con este nombre se agrupan de manera informal un conjunto de bloques tectónicos que afloran en la mitad oriental de la Plancha 114 Dabeiba y en los cuales no es posible determinar secuencias completas o parciales dentro de cada bloque sino segmentos de secuencias sin base y techo definido limitadas por fallas. Se hace una correlación por similitud litológica, pero se carece de datos que permitan decir que un bloque tectónico de litología similar corresponde en edad a otro bloque de similar litología.

Amenazas geológicas

Las características geológicas de Dabeiba están relacionadas con la evolución del occidente colombiano, asociado a un límite convergente de placas donde existen numerosas fallas y zonas de debilidad que causan inestabilidad en las laderas. Como consecuencia de las características geológicas y la localización geográfica, gran parte del municipio está sometido a diferentes grados de amenazas geológicas, las cuales pueden implicar riesgos de importancia en los centros poblados. Las amenazas geológicas se presentan principalmente bajo la presencia de eventos sísmicos, inundaciones, avenidas torrentinales y movimientos por remoción en masa.

Amenaza por inundación

En el área de interés las corrientes tienen unos cauces típicos de ríos de montañas, por lo que con excepción de algunos barrios localizados en la parte baja de Dabeiba, no existen amenazas por inundación altas relacionadas con estas corrientes. Otros afluentes de estos ríos, como los ríos Uramita y Urama y las quebradas Botija y Cestillal, han ocasionado inundaciones en áreas puntuales, como en la vereda Nudillal por parte del río Uramita.

Al norte del Llano de Sincerín, ubicado al occidente de Frontino, se une la quebrada Musinga con el río Verde. Por ubicarse en una zona inundable, debe evitarse el desarrollo de infraestructura física sobre el Llano de Sincerín. Por otra parte, durante la temporada invernal de 2008, se han reportado inundaciones asociadas a las siguientes quebradas
ubicadas dentro del Municipio de Dabeiba: La Seca, El Tigre, Palo Hueco y Camparrusia, ocasionándose el colapso e diez casas en el corregimiento de Camparrusia y cinco en la vereda Agua Linda (El Mundo, septiembre 23 de 2008).

Amenaza sísmica

A escala regional y de acuerdo al mapa de Amenaza Sísmica para Colombia, la región tiene una amenaza sísmica alta, por lo que la oficina de planeación municipal de la alcaldía está en la obligación de controlar que las construcciones se realicen bajo el más estricto cumplimiento de las normas sísmos resistentes, amparadas por la Ley 400 de 1997. Para finales de 2008, comenzó la operación de una estación sismológica satelital a cargo de INGEOMINAS, la cual está localizada en la vereda Cruces del Municipio de Dabeiba (carretera a Urama Grande), con la cual se mejoró la cobertura de estaciones en esta zona de la cordillera.

Los centros poblados de Frontino, Murrí y Nutibara se han visto afectados por varios eventos sísmicos, entre los que se destacan los ocurridos en diciembre 1 de 1903, enero 20 de 1904, febrero 14 de 1952, septiembre 26 de 1970, marzo 23 de 1987 y octubre 18 de 1992, este último asociado a la sismofuente de Murindó. El libro Historia de los terremotos en Colombia, reporta que sismos ocurridos en diciembre 12 de 1957 y enero 1 de 1960 (Ramírez, 1975) afectaron el poblado de Dabeiba. Estos eventos recientes son un reflejo de la alta actividad sísmica que tiene lugar en el occidente colombiano, y que puede llegar a afectar los centros poblados de Dabeiba y Frontino (Alzate, 1995). El hecho de que la cabecera municipal de este último se encuentre ubicada sobre depósitos no consolidados, incrementaría el efecto de las ondas sísmicas sobre la infraestructura existente. A partir de evidencias morfo tectónicas, se determinó actividad durante el cuaternario para las fallas San Ruperto, Morrogacho y Guamo. Igualmente se definió un evento máximo probable de 6,8 para el Municipio de Frontino (Alzate, 1995)

ANÁLISIS MULTI TEMPORAL

Este análisis tiene como objetivo fundamental la captura de datos cronológicos sobre la cobertura del territorio, mediante la interpretación visual de imágenes satelitales.

Imagen 5: 2008- Zona montañosa con relieve ondulado que alcanzan alturas de 450 m.s.n.m. Compuestas por valles inter montañosos y rodeado por El Riosucio
Imagen 6: 2013- Zona montañosa, se encuentran zonas erosionados y con cauces naturales cercanos

Imagen 7: 2013- Cobertura vegetal de tipo natural, afloramiento rocoso, terrenos cubiertos por vegetación acuática, localizado al borde del Rio sucio. Se ve área de crecimiento arbustivo.
El área no presenta un cambio significativo en las diferentes coberturas, la variación en el uso es debido a la naturaleza agropecuaria de la zona, la estacionalidad de los diferentes cultivos y la dinámica normal de la población.

DESCRIPCION DEL PROYECTO

El proyecto para el diseño de la vía se localiza en el municipio de Dabeiba, Antioquia en el PR 0+020.078. La zona de estudio se divide en dos secciones que comprenden los retornos Norte-Sur.
PLAN DE EXPLORACIÓN DEL SUBSUELO

El presente estudio Geotécnico se efectuará conforme a lo establecido en el título H de la Norma Colombiana para diseño y construcción Sismo Resistente NRS-2010, el mismo será basado en los resultados de la exploración de campo, estudios de laboratorio y análisis geomorfológico.

De acuerdo a la tabla H.3.2.1 de la NSR 10 para el proyecto se define el número mínimo de sondeos y profundidad de las perforaciones así:

- Sección 1 Costado Norte (retorno sur-sur)
- Sección 2 Eje 1 (proyección de la vía)
- Sección 3 Costado sur (retorno norte-norte)
- Sección 4 Eje 4 (proyección de la vía)

En la Tabla 1 se puede observar la relación de perforaciones realizadas en las cuatro secciones. Cabe anotar que las perforaciones se distribuyeron teniendo en cuenta el talud aledaño a la vía en diseño y la proyección de la vía.

<table>
<thead>
<tr>
<th>PERFORACIÓN</th>
<th>PROFUNDIDAD (m)</th>
<th>DESCRIPCION</th>
<th>ABSCISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Retorno sur-sur</td>
<td>PR 0+020.078</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Eje 1</td>
<td>PR 0+40</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>Retorno norte-norte</td>
<td>PR 0+140</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>Eje 4</td>
<td>PR 0+100</td>
</tr>
</tbody>
</table>

Tabla 2 Relación perforaciones por sección. elaboración propia

<table>
<thead>
<tr>
<th>SONDEO</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFUNDIDAD</td>
<td>Nº GOLPES</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
</tr>
</tbody>
</table>

LLeno Heterogéneo

Depósito de Vertientes
<table>
<thead>
<tr>
<th>SONDEO</th>
<th>P2</th>
<th>PROFUNDIDAD</th>
<th>Nº GOLPES</th>
<th>NF</th>
<th>ESTRATO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
<td>LLENO HETEROGENO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td></td>
<td>DEPÓSITO DE VERTIENTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SONDEO</th>
<th>P3</th>
<th>PROFUNDIDAD</th>
<th>Nº GOLPES</th>
<th>NF</th>
<th>ESTRATO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td></td>
<td>LLENO HETEROGENO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>13</td>
<td></td>
<td>DEPOSITO DE VERTIENTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SONDEO</th>
<th>P4</th>
<th>PROFUNDIDAD</th>
<th>Nº GOLPES</th>
<th>NF</th>
<th>ESTRATO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
<td>LLENO HETEROGENO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>25</td>
<td></td>
<td>DEPOSITO DE VERTIENTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CARACTERIZACION DEL SUBSUELO

Propiedades físicas

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Perforación</th>
<th>Profundidad Muestra</th>
<th>Humedad natural (%)</th>
<th>Límite liquido (%)</th>
<th>Límite Plastico (%)</th>
<th>Indice plasticidad</th>
<th>% Gravas</th>
<th>% Arenas</th>
<th>Clasif USC</th>
<th>Indice grupo</th>
<th>Clasif AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Muestra 1</td>
<td>0,50-0,95</td>
<td>49,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 2</td>
<td>1,50-1,95</td>
<td>35,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 3</td>
<td>2,50-2,95</td>
<td>66,92 63</td>
<td>38</td>
<td>25</td>
<td>0,9</td>
<td>90,6</td>
<td>8,5</td>
<td>MH</td>
<td>18</td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 4</td>
<td>3,50-3,95</td>
<td>44,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 5</td>
<td>4,50-4,95</td>
<td>49,84 65</td>
<td>37</td>
<td>28</td>
<td>0,7</td>
<td>85,1</td>
<td>14,2</td>
<td>MH</td>
<td>19</td>
<td>A.7.5</td>
</tr>
<tr>
<td>P2</td>
<td>Muestra 1</td>
<td>0,50-0,95</td>
<td>42,24</td>
<td>50</td>
<td>32</td>
<td>18</td>
<td>25,2</td>
<td>51,9</td>
<td>23 MH</td>
<td>13</td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 2</td>
<td>1,50-1,95</td>
<td>33,65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 3</td>
<td>2,50-2,95</td>
<td>36,19</td>
<td>52</td>
<td>32</td>
<td>20</td>
<td>0,4</td>
<td>83,1</td>
<td>16,5 MH</td>
<td>15</td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 4</td>
<td>3,50-3,95</td>
<td>58,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 5</td>
<td>2,50-2,95</td>
<td>48,45</td>
<td>51</td>
<td>33</td>
<td>22</td>
<td>0,5</td>
<td>91,2</td>
<td>14,5</td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td>P3</td>
<td>Muestra 1</td>
<td>0,50-0,95</td>
<td>40,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 2</td>
<td>1,50-1,95</td>
<td>82,64</td>
<td>51</td>
<td>32</td>
<td>19</td>
<td>0</td>
<td>94,5</td>
<td>5,6 MH</td>
<td>14</td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 3</td>
<td>2,50-2,95</td>
<td>51,7 86</td>
<td>48</td>
<td>38</td>
<td>0</td>
<td>92</td>
<td>8 MH</td>
<td>28</td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 4</td>
<td>3,50-3,95</td>
<td>74,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 6</td>
<td>5,50-5,95</td>
<td>49,97</td>
<td>64</td>
<td>33</td>
<td>31</td>
<td>0</td>
<td>84</td>
<td>16 MH</td>
<td>20</td>
<td>A.7.5</td>
</tr>
<tr>
<td>P4</td>
<td>Muestra 1</td>
<td>0,50-0,95</td>
<td>47,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 2</td>
<td>1,50-1,95</td>
<td>39,87</td>
<td>63</td>
<td>43</td>
<td>20</td>
<td>0,5</td>
<td>90,2</td>
<td>9,3 MH</td>
<td>17</td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 4</td>
<td>3,50-3,95</td>
<td>44,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 8</td>
<td>7,50-7,95</td>
<td>52,02</td>
<td>68</td>
<td>33</td>
<td>35</td>
<td>3,8</td>
<td>79,7</td>
<td>16,5 MH</td>
<td>23</td>
<td>A.7.5</td>
</tr>
<tr>
<td></td>
<td>Muestra 9</td>
<td>3,50-3,95</td>
<td>34,95</td>
<td>90</td>
<td>44</td>
<td>46</td>
<td>0</td>
<td>97,2</td>
<td>2,8 MH</td>
<td>33</td>
<td>A.7.5</td>
</tr>
</tbody>
</table>

Tabla 3 Propiedades físicas del suelo, elaboración propia
Propiedades Mecánicas (Parámetros geotécnicos)

Para determinar los parámetros de ángulo de fricción y cohesión se utilizó el método de Álvaro González el cual consiste en realizar correlaciones a los datos obtenidos en el ensayo de SPT.

Tabla 4, correlación parámetros perforación 1

<table>
<thead>
<tr>
<th>Suelo</th>
<th>Z(Nf/m)</th>
<th>sv (KPa)</th>
<th>m (KPa)</th>
<th>s’v (KPa)</th>
<th>N1 (Conf. INA)</th>
<th>Rs</th>
<th>K (Marcuson)</th>
<th>N1(45)</th>
<th>f’eq (°)</th>
<th>t (Kpa)</th>
<th>C (Kpa)</th>
<th>f’ (°)</th>
<th>Suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lleno</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>10</td>
<td>0,17</td>
<td>1,41</td>
<td>1,59</td>
<td>9</td>
<td>26</td>
<td>8,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34</td>
<td>0</td>
<td>34</td>
<td>5</td>
<td>7</td>
<td>0,34</td>
<td>1,41</td>
<td>1,36</td>
<td>6</td>
<td>24</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>51</td>
<td>0</td>
<td>51</td>
<td>10</td>
<td>12</td>
<td>0,51</td>
<td>1,41</td>
<td>1,22</td>
<td>11</td>
<td>27</td>
<td>25,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>68</td>
<td>10</td>
<td>58</td>
<td>12</td>
<td>14</td>
<td>0,58</td>
<td>1,41</td>
<td>1,18</td>
<td>13</td>
<td>28</td>
<td>30,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>85</td>
<td>20</td>
<td>65</td>
<td>11</td>
<td>13</td>
<td>0,65</td>
<td>1,41</td>
<td>1,14</td>
<td>12</td>
<td>27</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>102</td>
<td>30</td>
<td>72</td>
<td>15</td>
<td>17</td>
<td>0,72</td>
<td>1,41</td>
<td>1,11</td>
<td>16</td>
<td>29</td>
<td>39,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>119</td>
<td>40</td>
<td>79</td>
<td>19</td>
<td>20</td>
<td>0,79</td>
<td>1,41</td>
<td>1,08</td>
<td>19</td>
<td>30</td>
<td>46,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>136</td>
<td>50</td>
<td>86</td>
<td>20</td>
<td>21</td>
<td>0,86</td>
<td>1,41</td>
<td>1,05</td>
<td>20</td>
<td>31</td>
<td>51,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>153</td>
<td>60</td>
<td>93</td>
<td>25</td>
<td>26</td>
<td>0,93</td>
<td>1,41</td>
<td>1,02</td>
<td>24</td>
<td>32</td>
<td>58,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>170</td>
<td>70</td>
<td>100</td>
<td>28</td>
<td>28</td>
<td>1</td>
<td>0,92</td>
<td>1,00</td>
<td>26</td>
<td>33</td>
<td>65,1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suelo</th>
<th>Z(Nf/m)</th>
<th>sv (KPa)</th>
<th>m (KPa)</th>
<th>s’v (KPa)</th>
<th>N1 (Conf. INA)</th>
<th>Rs</th>
<th>K (Marcuson)</th>
<th>N1(45)</th>
<th>f’eq (°)</th>
<th>t (Kpa)</th>
<th>C (Kpa)</th>
<th>f’ (°)</th>
<th>Suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lleno</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>5</td>
<td>8</td>
<td>0,17</td>
<td>1,41</td>
<td>1,59</td>
<td>7</td>
<td>25</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34</td>
<td>0</td>
<td>34</td>
<td>6</td>
<td>8</td>
<td>0,34</td>
<td>1,41</td>
<td>1,36</td>
<td>8</td>
<td>25</td>
<td>15,7</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 5, correlación parámetros perforación 2

CORRELACIÓN PARÁMETROS DEL SUELO

MÉTODO DE ALVARO GONZÁLEZ

<table>
<thead>
<tr>
<th>Parámetro:</th>
<th>Ángulo de Fricción Interna (ø°) y Cohesión a partir del S.P.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto:</td>
<td>diseño vía de orden secundario, municipio de Dabeiba</td>
</tr>
<tr>
<td>Fecha:</td>
<td>2019</td>
</tr>
<tr>
<td>Peso del martillo (Kg):</td>
<td>65</td>
</tr>
<tr>
<td>Altura de caída (m):</td>
<td>0,76</td>
</tr>
<tr>
<td>Método de Cálculo:</td>
<td>Gonzales 1999, Idriss (Marcuson) (Cn <=2)</td>
</tr>
<tr>
<td>ZNF(m)</td>
<td>4</td>
</tr>
<tr>
<td>F.S.</td>
<td>1</td>
</tr>
</tbody>
</table>

1	17	17	0	17	7	11	0,17	1,41	1,59	10	26	8,4	23,552	Lleno
2	17	34	0	34	9	12	0,34	1,41	1,36	11	27	17,3		
3	17	51	0	51	10	12	0,51	1,41	1,22	11	27	25,9		
4	17	68	0	68	10	11	0,68	1,41	1,13	11	26	33,9		
5	17	85	10	75	15	16	0,75	1,41	1,10	15	29	41,3		
6	17	102	20	82	13	14	0,82	1,41	1,07	13	28	43,1		
7	17	119	30	89	20	21	0,89	1,41	1,04	19	31	52,6		
8	17	136	40	96	21	21	0,96	1,41	1,01	20	31	57,1		
9	17	153	50	103	22	22	1,03	0,92	0,99	20	31	61,7		
10	17	170	60	110	25	24	1,1	0,92	0,97	23	32	68,2		

Tabla 6, correlación parámetros perforación 3
<table>
<thead>
<tr>
<th>N° de golpes corregido (Ensayo SPT) Suministrados por el estudio de suelos.</th>
</tr>
</thead>
</table>

Peso unitario húmedo (Ton /m3)
Este parámetro es calculado teniendo en cuenta las fórmulas de correlación entre parámetros geotécnicos.

Peso unitario saturado (Ton /m3)
Este parámetro fue asumido teniendo en cuenta el tipo de suelo que registra el estudio de suelos.

Ángulo de fricción interna del suelo φ
Este parámetro fue calculado teniendo en cuenta las fórmulas de correlación y fue asumido en algunos casos teniendo en cuenta el tipo de suelo.

Cohesión (Kpa)
Este parámetro fue calculado teniendo en cuenta las fórmulas de correlación y fue asumido en algunos casos teniendo en cuenta el tipo de suelo para garantizar la estabilidad de los estratos dentro del modelo en el software.

Con los cálculos realizados para cada tipo de suelo y considerando las profundidades de cada sondeo y el respectivo nivel freático encontrado para cada uno, se obtienen los datos de °Φ Fricción y cohesión por medio de las correlaciones planteadas en el método del ingeniero Álvaro González. A continuación, se presentan los datos calculados.

<table>
<thead>
<tr>
<th>Material</th>
<th>Cohesión (KPa)</th>
<th>°Φ Fricción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promedio Lleno Heterogéneo</td>
<td>5</td>
<td>22,16</td>
</tr>
<tr>
<td>Promedio Depósito de Vertiente</td>
<td>11</td>
<td>26,23</td>
</tr>
</tbody>
</table>

Tabla 8. Promedio correlaciones realizadas por el método Álvaro González. elaboración propia

Resultados ensayo Corte Directo

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Material</th>
<th>Cohesión (KPa)</th>
<th>°Φ Fricción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corte Directo 1</td>
<td>Lleno Heterogéneo</td>
<td>22,8</td>
<td>11</td>
</tr>
<tr>
<td>Corte Directo 2</td>
<td>Depósito de Vertiente</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>

Tabla 9. Resultados ensayo de corte directo. elaboración propia
Realizando el cálculo promedio de los resultados obtenidos en el ensayo de corte directo y en las correlaciones por método de Álvaro González, se obtuvieron los siguientes datos para los parámetros de °Φ Fricción y cohesión para los tipos de suelo encontrados.

<table>
<thead>
<tr>
<th>Material</th>
<th>Cohesión (KPa)</th>
<th>°Φ Fricción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promedio Lleno Heterogéneo</td>
<td>13,9</td>
<td>16,58</td>
</tr>
<tr>
<td>Promedio Depósito de Vertiente</td>
<td>5,5</td>
<td>24,115</td>
</tr>
</tbody>
</table>

Tabla 10. Promedio de los Resultados ensayo de corte directo y correlaciones A González, elaboración propia

PARAMETROS DE SISMO

Dabeiba se encuentra en una región de alta actividad sísmica según lo establecido en el Reglamento Técnico Colombiano de Construcción Sismo Resistente (NSR 10), es por esto que los parámetros de aceleración sísmica horizontal y vertical fueron determinados según lo establecido en dicho reglamento.

Aceleración horizontal pico efectiva \(A_a = 0.25 \)

Aceleración vertical pico efectiva \(A_v = 0.30 \)

Coeficiente sísmico de diseño para análisis pseudoestático \((KST) = 0.80 \)

Se selecciona el valor que pertenece a suelos, enrocados y macizos muy rocosos; con un \(K_{st} \) de 0.80, ya que no se ejecutó ningún análisis de amplificación en los suelos expansivos de estudio.

Coeficiente de amplificación \((Fa) = 1.30 \)

Coeficiente de importancia \((I) = 1.00 \)

\(\text{Grupo I, estructuras de ocupación normal} \)

\[A_{\text{max}} = A_a \times Fa \times I \]

\[A_{\text{max}} = 0.25 \times 1.30 \times 1.00 = 0.325 \]
KST = 0.80 x 0.325 = 0.26

Este es el valor obtenido como coeficiente de aceleración de amenaza sísmica en el diseño de los taludes, el cual corresponde a un valor de amenaza alto.

\[KV = \frac{2}{3} \times KST \]

KV = 2/3 x 0.26 = 0.17

ANÁLISIS DE ESTABILIDAD

Para el análisis de la estabilidad de los taludes de la zona de estudio para la construcción de una vía de orden secundario en el Municipio de Dabeiba-Antioquia se hizo uso de los siguientes modelos de análisis dentro del método de equilibrio límite:

- Bishop simplificado
- Janbu simplificado
- Janbu corregido
- Fellenius
- Spencer

Cada uno de los modelos de análisis están contenidos dentro del análisis interno del software Slide ®, a continuación, se enuncian los parámetros de entrada para la modelación.

parámetros de entrada

Los parámetros de entrada se concentran en cuatro (4) grupos: los parámetros geométricos, estos se deducen de los perfiles estratigráficos resultados del estudio de suelos suministrado, geotécnicos los cuales se deducen de los estudios de suelos suministrados de la zona de estudio, los sísmicos, los cuales basan su deducción de las condiciones regionales y los registros de actividad sísmica de la zona, los hidrológicos, en donde se ubica el nivel freático y la influencia de parámetros como la relación de presión de poros.
Perfil 1 se denomina como corte A, el perfil 2 se denomina como corte B y el perfil 3 se denomina como corte C.

Basados en las perforaciones y los perfiles deducidos teniendo en cuenta la estratigrafía y la geología presente en los taludes de la zona de estudio, se tomó para la modelación los siguientes perfiles:
Imagen 12. perfil 2 en condiciones naturales

Imagen 13. perfil 3 en condiciones naturales
Factores de seguridad:

Para cada caso se tienen a continuación los factores mínimos que se deben tener para lograr la estabilidad en los perfiles estudiados:

Fs Estático: 1.5
Fs Dinámico: 1.05

PERFIL 1

El perfil 1 en condiciones estáticas tiene un Fs del 2.823, donde se evidencia que el método utilizado muestra un alto grado de estabilidad en la zona.
Ya el perfil 1 en condiciones dinámicas tiene un Factor de seguridad del 1.087, encontrándose en el rango requerido para esta condición, sin embargo, con relación al análisis en condiciones dinámicas varía en un 38%.

Aplicando una carga de 40 KN/m² el factor de seguridad en condiciones estáticas presenta un factor de seguridad de 2.202, lo cual continúa por encima de los rangos definidos para esta condición.

Para la misma carga en condiciones dinámicas, arroja un Factor de seguridad de 1.110, valor que se aproxima a esta condición.
De acuerdo a los análisis anteriores, el talud es estable aun en los estados más críticos, con nivel freático y con sismo por lo que no requiere obras de contención o estabilización.

PERFIL 2

![Imagen 18. perfil 2 en condiciones estáticas](image18)

El perfil 2 en condiciones estáticas tiene un Fs del 1.533, lo cual se encuentra dentro de los factores mínimos requeridos.

![Imagen 19. perfil 2 en condiciones dinámicas](image19)

En condiciones también cumple con el factor de seguridad requerido por lo no es necesario realizar obras de contención o estabilización.
Aplicando una carga de 40 KN/m2 el factor de seguridad en condiciones estáticas presenta un factor de seguridad de 1.608, con una variación del 5% respecto al análisis sin carga en condiciones estáticas continuando por encima de los rangos definidos para esta condición.

Para la misma carga en condiciones dinámicas, arroja un Factor de seguridad de 1.167, lo que varía igualmente en un 5% con relación al análisis sin carga.

De acuerdo a los análisis anteriores, el talud es estable aun en los estados más críticos, con nivel freático y con sismo por lo que no requiere obras de contención o estabilización.
PERFIL 3

Imagen 22. perfil 3 en condiciones estáticas

Este perfil en condiciones estáticas tiene un factor de seguridad de 1.038 por debajo del mínimo requerido.

Imagen 23. perfil 3 en condiciones dinámicas
Al igual que el perfil 2 en condiciones dinámicas tampoco cumple con el factor de seguridad requerido por lo que será necesario realizar obras de estabilización para cumplir los dos factores requeridos.

Imagen 24 perfil 3 con carga en condiciones estáticas

Aplicando la carga de 40 KN/m2 en condiciones estáticas, arroja un Factor de seguridad de 1.038, no variando con relación al análisis sin carga en condiciones estáticas.

Imagen 25 perfil 3 con carga en condiciones dinámicas

Aplicando una carga de 40 KN/m2 el factor de seguridad en condiciones dinámicas no varía respecto al análisis sin carga en condiciones dinámicas sin embargo continua por debajo de los rangos definidos para esta condición.
Estabilización perfil 3

Para alcanzar la estabilidad del perfil 3 se realizaron los siguientes procedimientos:

- Terraceo del talud desde la parte superior para lograr un ângulo de 60°
- Cinco anclajes activos tipo End Anchored con una separación entre anclajes de 1 metro, capacidad de tensión de 100 KN con una fuerza de adhesión de 10 KN/m² y una profundidad efectiva de 10 metros.
- Muro de contención: Se plantea un sistema de muro con cimientos profundos tipo pila, para esta estructura se recomienda usar un concreto de 4000 psi de resistencia y acero de refuerzo de 60000 psi para el refuerzo principal y 37000 psi para aros y anillos, las pilas deben estar empotradas como mínimo 4 metros en el estrato duro por lo que se establecen a una profundidad de 8 metros y con diámetro de 1.20 metros para garantizar la estabilidad, para la evacuación del agua subterránea el muro está acompañado por un filtro de grava de diámetros entre ¾” y 1” con una tubería perforada a lo largo del muro de entre 3” y 4”.

Imagen 26. Detalle de muro de contención propuesto
Imagen 27. perfil 3 con obras de estabilización.

Imagen 28. perfil 3 con obras de estabilización en condiciones estáticas
De acuerdo con los análisis realizados a cada perfil se tienen los siguientes resultados

RESULTADO DE ANALISIS

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>condiciones estaticas</th>
<th>condiciones dinamicas</th>
<th>condiciones estaticas con carga</th>
<th>condiciones dinamicas con carga</th>
<th>Estabilizado condiciones dinamicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.823</td>
<td>1.087</td>
<td>2.202</td>
<td>1.110</td>
<td>N.A</td>
</tr>
<tr>
<td>2</td>
<td>1.234</td>
<td>0.727</td>
<td>1.387</td>
<td>0.761</td>
<td>N.A</td>
</tr>
<tr>
<td>3</td>
<td>1.038</td>
<td>0.669</td>
<td>1.038</td>
<td>0.669</td>
<td>1.063</td>
</tr>
</tbody>
</table>

Tabla 11. resultados de análisis por perfil

Para el análisis de estabilidad de la vía de orden secundario en el Municipio de Dabeiba, se tuvo en cuenta las secciones más críticas. Cabe anotar que adicionalmente en este proyecto se presentan obras adicionales como muros de contención.
Finalmente, como parte del control de aguas se realizarán unas perforaciones de drenaje, estando la primera fila de las perforaciones a 2.00 m de la pata del talud y la segunda a 5 metros, quedando en una misma cara dos filas de perforaciones. Estas perforaciones deben tener una inclinación con respecto a la horizontal de 10º y una profundidad de 8 metros.

EVALUACIÓN DE ESTABILIDAD

Como se puede observar en el análisis de estabilidad realizado a los perfiles de la vía en estudio, se requirió de obras de contención que permitieran la estabilidad en los puntos más críticos de la zona y para que se ajustaran a los requerimientos se hicieron de tipo mixto (muros de contención con cimientos profundos tipo pila y anclajes activos tipo End Anchored, ambos para controlar los esfuerzos y momentos de la masa de suelo y la erosión de la parte alta del talud.

Con el análisis de estabilidad se pudo evidenciar el riesgo de deslizamientos en masa del talud sobre el cual se construirá la vía, mediante el análisis geotécnico de estabilidad y considerando factores externos que contribuyen a la formación de estos movimientos lo que permitió establecer los criterios más representativos (tipos de suelo, profundidad máxima aproximada de la superficie de falla etc…)
DISEÑO DE LA VÍA

Para dimensionar la estructura de pavimento que se debe construir, se realizaron apiques exploratorios, de las muestras extraídas, se determinaron humedad natural, índice de Atterberg y granulometría. Para definir la capacidad portante del suelo se tomaron muestras en campo para realizar el ensayo de CBR en el laboratorio.

De la información recopilada durante la exploración de campo y los resultados de los ensayos de laboratorio se puede determinar las siguientes características.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Clasificación</th>
<th>AASHTO</th>
<th>USC</th>
<th>IG</th>
<th>LL (%)</th>
<th>LP (%)</th>
<th>IP (%)</th>
<th>Humedad natural (%)</th>
<th>% Pasa 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-7-5</td>
<td>MH</td>
<td>18</td>
<td></td>
<td>63,0</td>
<td>38,0</td>
<td>25,0</td>
<td>46,0</td>
<td>90,6</td>
</tr>
<tr>
<td>2</td>
<td>A-7-5</td>
<td>MH</td>
<td>19</td>
<td></td>
<td>65,0</td>
<td>37,0</td>
<td>28,0</td>
<td>61,0</td>
<td>85,1</td>
</tr>
<tr>
<td>3</td>
<td>A-7-5</td>
<td>MH</td>
<td>13</td>
<td></td>
<td>50,0</td>
<td>32,0</td>
<td>18,0</td>
<td>27,0</td>
<td>51,8</td>
</tr>
<tr>
<td>4</td>
<td>A-7-5</td>
<td>MH</td>
<td>15</td>
<td></td>
<td>52,0</td>
<td>32,0</td>
<td>20,0</td>
<td>45,0</td>
<td>83,1</td>
</tr>
<tr>
<td>5</td>
<td>A-7-5</td>
<td>MH</td>
<td>28</td>
<td></td>
<td>86,0</td>
<td>48,0</td>
<td>38,0</td>
<td>58,0</td>
<td>92,0</td>
</tr>
<tr>
<td>6</td>
<td>A-7-5</td>
<td>MH</td>
<td>14</td>
<td></td>
<td>51,0</td>
<td>32,0</td>
<td>19,0</td>
<td>40,0</td>
<td>94,4</td>
</tr>
<tr>
<td>7</td>
<td>A-7-5</td>
<td>MH</td>
<td>20</td>
<td></td>
<td>64,0</td>
<td>33,0</td>
<td>31,0</td>
<td>39,0</td>
<td>84,0</td>
</tr>
<tr>
<td>8</td>
<td>A-7-5</td>
<td>MH</td>
<td>17</td>
<td></td>
<td>63,0</td>
<td>43,0</td>
<td>20,0</td>
<td>48,0</td>
<td>90,1</td>
</tr>
<tr>
<td>9</td>
<td>A-7-5</td>
<td>MH</td>
<td>23</td>
<td></td>
<td>68,0</td>
<td>33,0</td>
<td>35,0</td>
<td>36,0</td>
<td>79,7</td>
</tr>
<tr>
<td>10</td>
<td>A-7-5</td>
<td>MH</td>
<td>33</td>
<td></td>
<td>90,0</td>
<td>44,0</td>
<td>46,0</td>
<td>47,0</td>
<td>97,2</td>
</tr>
</tbody>
</table>

Tabla 12. Resumen de los suelos encontrados, elaboración propia
PARÁMETROS DE DISEÑO

Tránsito de diseño

El estudio del tránsito es uno de los factores más importantes en la definición de la estructura del pavimento, de igual forma es primordial conocer el tipo de vehículo y número de veces que pasa por un determinado sitio y el peso por eje de este tipo de vehículos. Para realizar este estudio se realizó un aforo vehicular por tres días continuos, a continuación, se presenta un resumen del conteo.

<table>
<thead>
<tr>
<th>Día</th>
<th>Motos</th>
<th>Autos</th>
<th>Busetas</th>
<th>Bus</th>
<th>C2P</th>
<th>C2G</th>
<th>C3-C4</th>
<th>C5</th>
<th>>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>496</td>
<td>203</td>
<td>13</td>
<td>9</td>
<td>30</td>
<td>44</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>595</td>
<td>220</td>
<td>13</td>
<td>13</td>
<td>44</td>
<td>31</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>651</td>
<td>343</td>
<td>22</td>
<td>12</td>
<td>21</td>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1742</td>
<td>766</td>
<td>48</td>
<td>34</td>
<td>95</td>
<td>98</td>
<td>27</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabla 13. Conteo de tránsito, elaboración propia

Para realizar el cálculo del tránsito de diseño, se agruparon los tipos de vehículos de la siguiente manera:

<table>
<thead>
<tr>
<th>Día</th>
<th>Auto</th>
<th>Busetas-Buses</th>
<th>C2P-C2G</th>
<th>C3-C4-C5- >C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>203</td>
<td>22</td>
<td>74</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>220</td>
<td>26</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>343</td>
<td>34</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>766</td>
<td>82</td>
<td>193</td>
<td>32</td>
</tr>
</tbody>
</table>

Tabla 14. Tránsito total
CALCULO TRANSITO

Imagen 30. Cálculo del tránsito

El tránsito de diseño para la estructura del pavimento es de $N = 5.82 \times 10^5$ ejes equivalentes de 8.2 Ton para un periodo de diseño de 10 años.

CBR de diseño

La capacidad portante de un suelo se puede definir como la carga que éste es capaz de soportar sin que se produzcan asientos excesivos.

<table>
<thead>
<tr>
<th>Tipo de vehículo</th>
<th>N° vehículos / día</th>
<th>N° veh/día</th>
<th>N° veh/año</th>
<th>FC</th>
<th>ESAL EN CARRIL DE DISEÑO</th>
<th>Fcr</th>
<th>ESAL DISEÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[TPD]</td>
<td>[TPD*Fa]</td>
<td>[3]=</td>
<td>[2]*365</td>
<td>[4]</td>
<td>[5]=</td>
<td>[3]*[4]</td>
</tr>
<tr>
<td>A</td>
<td>109,429</td>
<td>54,714</td>
<td>19970,714</td>
<td>0,000</td>
<td>1,997</td>
<td>25,545</td>
<td>51,015</td>
</tr>
<tr>
<td>B</td>
<td>11,714</td>
<td>5,857</td>
<td>2137,857</td>
<td>1,000</td>
<td>2,137</td>
<td>25,545</td>
<td>54610,829</td>
</tr>
<tr>
<td>C2</td>
<td>27,571</td>
<td>13,786</td>
<td>5031,786</td>
<td>3,440</td>
<td>17,309</td>
<td>25,545</td>
<td>442161,237</td>
</tr>
<tr>
<td>C3 Y C4</td>
<td>4,571</td>
<td>2,286</td>
<td>834,286</td>
<td>4,000</td>
<td>33,391</td>
<td>25,545</td>
<td>85246,172</td>
</tr>
<tr>
<td>TOTAL</td>
<td>153,3</td>
<td>76,64</td>
<td>27974,64</td>
<td></td>
<td></td>
<td></td>
<td>582069,2517</td>
</tr>
</tbody>
</table>

TPD = Tasa de crecimiento anual, según el DANE

<table>
<thead>
<tr>
<th>Muestra</th>
<th>CBR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,6</td>
</tr>
<tr>
<td>2</td>
<td>1,0</td>
</tr>
<tr>
<td>3</td>
<td>15,1</td>
</tr>
<tr>
<td>4</td>
<td>5,6</td>
</tr>
</tbody>
</table>

Tabla 15. Resultados del CBR de laboratorio
De acuerdo a los resultados, se puede determinar que la capacidad de soporte de la subrasante posee valores que van desde 1,0 a 15,1%, resultados que indican un comportamiento del suelo de subrasante de malo a bueno.

Para obtener el CBR de diseño, se emplea la metodología del Instituto del Asfalto para un nivel de tránsito NT2, en la siguiente tabla y gráfico se presenta el resultado del CBR obtenido para un percentil de 75%.

<table>
<thead>
<tr>
<th>Apique</th>
<th>CBR (%)</th>
<th>Ordenados de menor a mayor</th>
<th>Numero de resultados mayores o iguales</th>
<th>Porcentaje de resultados mayores o iguales</th>
<th>CBR diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,6</td>
<td>1,0</td>
<td>4</td>
<td>100,0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3,6</td>
<td>3,0</td>
<td>3</td>
<td>75,0</td>
<td>5,6</td>
</tr>
<tr>
<td>3</td>
<td>3,0</td>
<td>3,6</td>
<td>2</td>
<td>50,0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3,8</td>
<td>3,8</td>
<td>1</td>
<td>25,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 16. Cálculo de porcentaje de valores

Imagen 31. Determinación CBR diseño
Módulo resiliente de la subrsante – Mr

Para el método AASHTO, el módulo resiliente o elástico es la propiedad que caracteriza los materiales de subrsante. Este módulo se puede determinar con un equipo especial o con correlaciones con otras pruebas, Heukelom y Klomp, han encontrado una relación entre Mr medido en campo y el CBR de laboratorio para la misma densidad y para suelos finos con un CBR sumergido no mayor de 10.

\[Mr \text{ (psi)} = 1500 \times CBR \]

Por lo tanto, el Mr para el caso es de \textbf{8400 psi}

Confiabilidad - R:

Con el parámetro de confiabilidad R, se trata de llegar a cierto grado de certeza en el método de diseño, para asegurar que las diversas alternativas que se obtengan, durarán como mínimo el período de diseño.

El valor R se obtiene de la siguiente tabla:

<table>
<thead>
<tr>
<th>Clasificación funcional</th>
<th>Nivel de confiabilidad R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urbana</td>
</tr>
<tr>
<td>Autopistas interestatales y otras</td>
<td>85 - 99,9</td>
</tr>
<tr>
<td>Arterias principales</td>
<td>80 - 99</td>
</tr>
<tr>
<td>Colectoras de Tránsitos</td>
<td>80 - 95</td>
</tr>
<tr>
<td>Carreteras Locales</td>
<td>50 - 80</td>
</tr>
</tbody>
</table>

\textit{Tabla 17. Confiabilidad R}

Se adopta un valor del 80%, por tratarse de un proyecto local, para el cual corresponde un valor de Zr=-0.841.

Desviación estándar - So
Este parámetro está ligado directamente con la Confiabilidad R, se debe seleccionar un valor So, representativo de condiciones locales particulares, que considera posibles variaciones en el comportamiento del pavimento y en la predicción del tránsito

<table>
<thead>
<tr>
<th>Caso de análisis</th>
<th>Desviación estándar - So</th>
</tr>
</thead>
<tbody>
<tr>
<td>Considerando la varianza del tránsito futuro</td>
<td>0.49</td>
</tr>
<tr>
<td>Sin considerar la varianza del tránsito futuro</td>
<td>0.44</td>
</tr>
</tbody>
</table>

\textit{Tabla 18. Desviación estándar – So}
En este diseño se utilizará el valor de $S_0 = 0.49$.

Índice de Serviciabilidad - ΔPSI

Los índices de serviciabilidad de un pavimento se definen como la capacidad que tiene la estructura de pavimento para prestar un servicio adecuado durante el periodo de diseño estimado. El Índice de serviciabilidad es la diferencia entre el índice de servicio inicial $\text{PSI}_{\text{inicial}}$ y índice de servicio final $\text{PSI}_{\text{final}}$. Para obtener los parámetros de $\text{PSI}_{\text{inicial}}$ y $\text{PSI}_{\text{final}}$ se utiliza la siguiente tabla.

<table>
<thead>
<tr>
<th>Tipo de carretera</th>
<th>Índice de Serviciabilidad - ΔPSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{PSI}_{\text{inicial}}$</td>
</tr>
<tr>
<td>Carretera principal</td>
<td>4.2</td>
</tr>
<tr>
<td>Carreteras secundarias</td>
<td>4.2</td>
</tr>
<tr>
<td>Condición de falla</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Tabla 19. Índice de Serviciabilidad - ΔPSI

Para el proyecto en estudio se toma $\text{PSI}_{\text{inicial}} = 4.2$ y $\text{PSI}_{\text{final}} = 2.0$, por lo tanto. ΔPSI es de 2.2%.

Coeficientes de capa – a

El coeficiente de capa a esta ligado a la calidad de los materiales que conformaran la estructura del pavimento, por lo tanto:

- Carpeta asfáltica – $a_1 = 0.44$
- Base granular – $a_2 = 0.14$
- Subbase granular – $a_3 = 0.12$

Condiciones de drenaje - m

La condición de drenaje es evaluada según un coeficiente de drenaje m, factor que depende de la calidad del drenaje y el porcentaje del tiempo a lo largo de un año, en el cual la estructura del pavimento pueda estar expuesta a niveles de humedad próximos a la saturación. El valor de dicho coeficiente de drenaje se obtiene con la siguiente tabla.
Calidad del drenaje | % del tiempo en que la estructura del pavimento está expuesta a humedades cercadas a la saturación
---|---|---|---|---
Excelente | Menos del 1% | 1.40 – 1.35 | 1.35 – 1.30 | 1.30 – 1.20 | 1.20
Bueno | 1.35 – 1.25 | 1.25 – 1.15 | 1.15 – 1.00 | 1.00
Aceptable | 1.25 – 1.15 | 1.15 – 1.05 | 1.00 – 0.80 | 0.80
Pobre | 1.15 – 1.05 | 1.05 – 0.80 | 0.80 – 0.60 | 0.60
Muy pobre | 1.05 – 0.96 | 0.95 – 0.75 | 0.75 – 0.40 | 0.40

Tabla 20. Condiciones de drenaje – m

Para este proyecto se adoptó un valor de **m de 1.0** para la carpeta asfáltica y para los materiales granulares que corresponde a un drenaje bueno.

A continuación, se resumen los parámetros descritos anteriormente:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Valor obtenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tránsito N</td>
<td>5.82x10³</td>
</tr>
<tr>
<td>CBR</td>
<td>5.6</td>
</tr>
<tr>
<td>Módulo resiliente de la subrasante - MR</td>
<td>8400 PSI</td>
</tr>
<tr>
<td>Confiabilidad - R</td>
<td>0.80%</td>
</tr>
<tr>
<td>Desviación estándar normal Zr</td>
<td>-0.841</td>
</tr>
<tr>
<td>Error estándar combinado de las predicciones de tránsito- So</td>
<td>0.49</td>
</tr>
<tr>
<td>Índice de Serviciabilidad - ΔPSI</td>
<td>2.2</td>
</tr>
<tr>
<td>Coeficientes de capa – a</td>
<td>CA = 0.44</td>
</tr>
<tr>
<td></td>
<td>BG = 0.14</td>
</tr>
<tr>
<td>Condiciones de drenaje - m</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tabla 21. Parámetros de diseño
ESTRUCTURA DE PAVIMENTO - MÉTODO AASHTO

<table>
<thead>
<tr>
<th>Transito</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR de la subrasante</td>
<td>5,82 E+05</td>
</tr>
<tr>
<td>Módulo resiliente de la subrasante</td>
<td>5,6</td>
</tr>
<tr>
<td>Confiabilidad</td>
<td>Mr</td>
</tr>
<tr>
<td>Desviación estandar normal</td>
<td>R</td>
</tr>
<tr>
<td>Error estandar combinado de las predicciones de tránsito</td>
<td>So</td>
</tr>
<tr>
<td>Índice de servicio inicial</td>
<td>PSI_inicial</td>
</tr>
<tr>
<td>Índice de servicio final</td>
<td>PSI_final</td>
</tr>
<tr>
<td>Pérdida de serviciabilidad final</td>
<td>ΔPSI</td>
</tr>
<tr>
<td>Número estructural colocado SN = (aimihi)</td>
<td>SN</td>
</tr>
<tr>
<td>Período de diseño: 10años</td>
<td>n</td>
</tr>
</tbody>
</table>

| Log(W18) (Ecuación) | 5,95 |
| Log (W18) | 5,76 |

ESTRUCTURA DE PAVIMENTO

<table>
<thead>
<tr>
<th>Espesor</th>
<th>Material</th>
<th>a</th>
<th>m</th>
<th>SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>pulg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,00</td>
<td>2,36</td>
<td>0,440</td>
<td>1,00</td>
<td>1,039</td>
</tr>
<tr>
<td>35,0</td>
<td>13,78</td>
<td>0,140</td>
<td>1,00</td>
<td>1,929</td>
</tr>
<tr>
<td>41,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 22. Alternativas de diseño pavimento flexible

<table>
<thead>
<tr>
<th>Capa</th>
<th>Espesor (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpeta asfáltica</td>
<td>6,0</td>
</tr>
<tr>
<td>Base granular</td>
<td>35,0</td>
</tr>
</tbody>
</table>

Imagen 32. Cálculo de la estructura del pavimento

Estructura de diseño

La estructura del pavimento está conformado por una carpeta asfáltica de 6,0cm apoyada sobre una base granular de 35,0cm
Finalmente, esta estructura se hará sobre la vía proyectada que tiene una longitud de 856 metros con un ancho de 6 metros, ambos lados se disponen de cunetas de sección triangular 0.5 m de ancho por 0.5 de profundidad, siendo el ancho total de la vía de 7 metros.

PRESUPUESTO

<table>
<thead>
<tr>
<th>CAP/ITEM</th>
<th>DESCRIPCION</th>
<th>UN.</th>
<th>CANT.</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRELIMINARES</td>
<td></td>
<td></td>
<td></td>
<td>$ 1.961.600</td>
</tr>
<tr>
<td>1,1</td>
<td>LOCALIZACION , TRAZADO Y REPLANTEO, se utilizará personal idóneo con equipo de precisión</td>
<td>Gl</td>
<td>1.000</td>
<td>$ 216</td>
<td>$ 215.800</td>
</tr>
<tr>
<td>1,2</td>
<td>Rocería, incluye botada de material sobrante</td>
<td>Ha</td>
<td>2</td>
<td>$ 472.900</td>
<td>$ 945.800</td>
</tr>
<tr>
<td>1,3</td>
<td>Desmonte y limpieza en zonas no boscosas</td>
<td>Ha</td>
<td>1</td>
<td>$ 800.000</td>
<td>$ 800.000</td>
</tr>
<tr>
<td>2</td>
<td>EXCAVACIONES Y LLENOS</td>
<td></td>
<td></td>
<td></td>
<td>$ 178.778.320</td>
</tr>
<tr>
<td></td>
<td>DESCRIPCION</td>
<td>UNIDAD</td>
<td>CANTIDAD</td>
<td>COSTO UNITARIO ($)</td>
<td>TOTAL ($)</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2.1</td>
<td>EXCAVACION MECANICA DE MATERIAL COMUN incluye, el cargue, retiro y botada de material sobrante hasta el botadero oficial o el sitio que destine la interventoria, dicha actividad se mide en el sitio antes del corte.</td>
<td>M3</td>
<td>6.020</td>
<td>$ 29.116</td>
<td>$ 175.278.320</td>
</tr>
<tr>
<td>2.2</td>
<td>Excavación en material común bajo el agua</td>
<td>M3</td>
<td>100</td>
<td>$ 35.000</td>
<td>$ 3.500.000</td>
</tr>
<tr>
<td>3.0</td>
<td>ESTRUCTURA DE PAVIMENTO</td>
<td>M3</td>
<td>2.107</td>
<td>$ 65.000</td>
<td>$ 136.955.000</td>
</tr>
<tr>
<td>3.1</td>
<td>Base granular bg-1</td>
<td>ML</td>
<td>1.720</td>
<td>$ 55.371</td>
<td>$ 95.237.497</td>
</tr>
<tr>
<td>3.2</td>
<td>Subbase</td>
<td>M3</td>
<td>1.200</td>
<td>$ 58.400</td>
<td>$ 70.080.000</td>
</tr>
<tr>
<td>3.3</td>
<td>carpeta de rodadura asfáltica mdc-2</td>
<td>M3</td>
<td>309</td>
<td>$ 509.384</td>
<td>$ 157.399.790</td>
</tr>
<tr>
<td>4</td>
<td>OBRAS COMPLEMENTARIAS DE CONCRETO</td>
<td>M3</td>
<td>1.720</td>
<td>$ 55.371</td>
<td>$ 95.237.497</td>
</tr>
<tr>
<td>4.1</td>
<td>CUNETA triangular 0.5*05 en concreto de 3000 psi E= 10cm y ancho interno 70cm, incluye recebo en cascajo sucio de 10cm de esp.</td>
<td>ML</td>
<td>80</td>
<td>$ 890.000</td>
<td>$ 71.200.000</td>
</tr>
<tr>
<td>4.2</td>
<td>Pila en concreto reforzado D= 1.20, L=8mts incluye anillo con E= 10mts</td>
<td>ML</td>
<td>67</td>
<td>$ 658.000</td>
<td>$ 44.217.600</td>
</tr>
<tr>
<td>5</td>
<td>OBRAS DE DRENAJE</td>
<td>ML</td>
<td>2.400</td>
<td>$ 89.000</td>
<td>$ 213.600.000</td>
</tr>
<tr>
<td>5.1</td>
<td>Suministro, transporte y colocación de tubería de drenaje L=8m</td>
<td>M</td>
<td>28</td>
<td>$ 30.780</td>
<td>$ 861.840</td>
</tr>
<tr>
<td>5.2</td>
<td>Transporte de material a mas de 3km</td>
<td>M3/KM</td>
<td>1.600</td>
<td>$ 302.624</td>
<td>$ 469.000.000</td>
</tr>
<tr>
<td>6.0</td>
<td>TUBERIA Y GEOTEXTILES</td>
<td>M</td>
<td>28</td>
<td>$ 10.808</td>
<td>$ 302.624</td>
</tr>
<tr>
<td>6.1</td>
<td>Geotextil no tejido NT= 2500</td>
<td>M2</td>
<td>84</td>
<td>$ 7.820</td>
<td>$ 656.880</td>
</tr>
<tr>
<td>6.2</td>
<td>Tuberia perforada de 4"</td>
<td>M</td>
<td>28</td>
<td>$ 30.780</td>
<td>$ 861.840</td>
</tr>
<tr>
<td>6.3</td>
<td>Tuberia sanitaria de 3" para Oidos del muro</td>
<td>M</td>
<td>28</td>
<td>$ 10.808</td>
<td>$ 302.624</td>
</tr>
</tbody>
</table>

Total Costo Directo: $ 1.467.251.152

Administra: 10% $ 146.725.115

Imprevistos: 5% $ 73.362.558

Utilidad: 5% $ 73.362.558

Total: $ 1.760.701.382
CONCLUSIONES

✓ Después de realizar el modelo en el software Slide se obtuvo la ubicación de las posibles superficies de falla de los taludes y su factor de seguridad, con base en estas fallas se halló el grado de estabilidad de dicho talud y se definieron las obras más confiables para mitigar los riesgos en el sector teniendo en cuenta la serie de datos estudiados.

✓ Como se puede observar en el análisis de estabilidad realizado a las secciones generales de la vía en estudio, la mayoría cumplen los criterios de control de factores de seguridad estático y dinámico aun con la presencia de nivel freático.

✓ Al analizar la estabilidad de los perfiles bajo parámetros geotécnicos del material de lleno heterogéneo de cohesión de 13.9 kN/m² y ángulo de fricción de 16. 58º y de los depósitos de vertientes de cohesión de 5.5 kN/m² y ángulo de fricción de 24. 11º la configuración de taludes cumple con los criterios tanto en condición estática como dinámica, encontrando factores de seguridad mayores a 1.5 y 1.1. respectivamente.

✓ Se presenta una zona crítica en el perfil 3, en la cual, los factores de seguridad de los taludes, tanto en condición estática como dinámica no cumplen con los factores de seguridad mínimos, con la presencia o no de nivel freático, siendo una zona de taludes que requieren especial atención.

✓ Se sugiere la construcción de obras de drenaje, para el manejo de aguas de escorrentía, tales como: rondas de coronación, cunetas y disipadores de energía que mitiguen el impacto que tienen sobre la estabilidad de los taludes e infraestructura de la vía.

✓ Se evidencia que bajo las condiciones topográficas del lugar y realizando las obras de estabilidad necesarias, es posible diseñar y construir una vía con las características de ser docilabilidad y confiabilidad requeridas para un periodo de diseño de 10 años con bajos costos de mantenimiento.
Lista de referencias

VARGAS DELGADO, Manuel. Ingeniería de fundaciones, fundamentos e introducción al análisis geotécnico. Escuela colombiana de ingeniería. 1996

ANEXOS

CBR DE SUELOS COMPACTADOS EN EL LABORATORIO Y SOBRE MUESTRA INALTERADA

<table>
<thead>
<tr>
<th>OBRA:</th>
<th>MUESTRA No:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUENTA:</th>
<th>PROFUNDIDAD (m):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESPOSABLE:</th>
<th>SONDEO No:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCALIZACION:</th>
<th>FECHA:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCION:</th>
<th>DESTINO MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estudio de suelos</td>
</tr>
</tbody>
</table>

MUESTRA INALTERADA

<table>
<thead>
<tr>
<th>No MOLDE</th>
<th>PESO MOLDE + SUELO HUMEDO (g)</th>
<th>PESO DEL MOLDE (g)</th>
<th>PESO DEL SUELO HUMEDO (g)</th>
<th>VOLUMEN DEL SUELO HUMEDO (cm³)</th>
<th>P. UNITARIO SUELO HUMEDO (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>11718</td>
<td>6771</td>
<td>4947</td>
<td>2486</td>
<td>1399</td>
</tr>
</tbody>
</table>

DATOS DE EXPANSION

<table>
<thead>
<tr>
<th>MOLDE No.</th>
<th>FECHA</th>
<th>HORA</th>
<th>DIAS</th>
<th>Lech. Ext.</th>
<th>Expansión %</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>15-02-18</td>
<td>15:05</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>16-02-18</td>
<td>15:05</td>
<td>2</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>17-02-18</td>
<td>15:05</td>
<td>3</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

HUMEDAD

<table>
<thead>
<tr>
<th>No DEL RECIPIENTE</th>
<th>HUMEDAD: INICIAL</th>
<th>HUMEDAD: FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>159.87</td>
<td>139.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PESO SUELO HÚMEDO + RECIP. (g)</th>
<th>PESO SUELO SECOCIP (g)</th>
<th>PESO DEL RECIPiente (g)</th>
<th>PESO DEL SUELO SEC (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.6</td>
<td>125.84</td>
<td>25.81</td>
<td>115.1</td>
</tr>
</tbody>
</table>

% DE HUMEDAD PROMEDIO: 11.5

<table>
<thead>
<tr>
<th>% DE HUMEDAD PROMEDIO: 11.5</th>
<th>P. UNITARIO SUELO SEC (kg/m³)</th>
<th>1.827</th>
</tr>
</thead>
</table>

ABSORCION

<table>
<thead>
<tr>
<th>MOLDE No.</th>
<th>PESO SUELO HUMEDO + MOLDE + BASE (g)</th>
<th>PESO MOLDE + BASE (g)</th>
<th>PESO DEL AGUA ABSORBERA (g)</th>
<th>% DEL AGUA ABSORBida</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>12075</td>
<td>6771</td>
<td>567</td>
<td>7.3</td>
</tr>
</tbody>
</table>

C.R.B. DATOS DEL ENSAYO DE PENETRACION

<table>
<thead>
<tr>
<th>Molde No.</th>
<th>C.R.B. INALTERADO CORREGIDO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Penetración (pulg)</th>
<th>Carga kg</th>
<th>Masalet kg/m²</th>
<th>Carga kg</th>
<th>Masalet kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.025</td>
<td>6</td>
<td>26.8</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>0.050</td>
<td>14</td>
<td>62.4</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>0.075</td>
<td>28</td>
<td>124.9</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>0.100</td>
<td>41</td>
<td>182.9</td>
<td>9.3</td>
<td>9.3</td>
</tr>
</tbody>
</table>

EQUIPO UTILIZADO

- Balanza Electrónica de 300g/0.01g
- Batombrera Electrónica de 300g/0.01g
- Tamiz Estándar
- Cubeta de Congoarde
- Horno Eléctrico

MUESTRA INALTERADA

Nº DE MOLDE: 5
PESO MOLDE + SUELO HÚMEDO (g): 12014
PESO DEL MOLDE (g): 7738
PESO DEL SUELO HÚMEDO (g): 4276
VOLUMEN DEL SUELO HÚMEDO (cm³): 2.045
P. UNITARIO SUELO HÚMEDO (kg/m³): 2.011

DATOS DE EXPANSIÓN

MOLDE No: 5
FECHA HORA DÍAS Lec. Ext. Expansión %
16-02-18 7:25 1 0 0.00
17-02-18 7:25 2 1 0.02
0.0
0.0
0.0

HUMEDAD

Nº DEL RECIPIENTE: 5 161
HUMEDAD INICIAL: 124.01
HUMEDAD FINAL: 166.88
PESO SUELO HÚMEDO + RECIP. (g): 105.61
PESO SUELO SECOS (g): 149.94
PESO DEL RECIPIENTE (g): 25.7
PESO DEL SUELO SECO (g): 79.91
% DE HUMEDAD: 23.01
% DE HUMEDAD PROMEDIO: 18.3
P. UNITARIO SUELO SECO (kg/m³): 1.70

ABSORCIÓN

MOLDE No: 5
PESO SUELO HÚMEDO + MOLDE + BASE (g): 12942
PESO MOLDE + BASE (g): 7738
PESO DEL AGUA ABSORBIDA (g): 28
% DEL AGUA ABSORBIDA: 0.7

CBR DATOS DEL ENSEÑO DE PENETRACIÓN

CBR INALTERADO CORREGIDO (%): 5
CBR ANTES DE SUMERGIR: 0.000
Penetrado pulg. 2.000¹ Carga kg Resist. kg/cm² Carga kg Resist. kg/cm²
0.000 0 0 0 0
0.025 1 2.2 0.1
0.050 1.2 6.4 0.3
0.075 2 7.5 0.4
0.100 2.5 11.2 0.6
0.125 2.8 12.5 0.6
0.150 3.5 15.6 0.6
0.175 3.8 17.4 0.6
0.200 4.5 20.1 0.6
0.225 5.5 24.5 1.3
0.250 6.9 30.0 1.6
0.275 8.5 35.7 1.6

EQUIPO UTILIZADO

MARCA/REFERENCIA
Balanza Electrónica de 300x0.01gr LEIXIS/MS-X
Balanza Electrónica de 300x0.1gr LEIXIS/MS-A
Tedes Estándar
Cabeza de Calibrado
Horneo Eléctrico
CBR DE SUELOS COMPACTADOS EN EL LABORATORIO Y SOBRE MUESTRA INALTERADA

OBRAS: MUESTRA No:
CLIENTE: PROFUNDIDAD (m):
LOCALIZACIÓN: SONDEO N.°:
FECHA:

MUESTRA INALTERADA

No MOLDE	110
Peso MOLDE + SUELO HUMEDO (g)	13181
Peso MOLDE (g)	819
Peso SUELO HUMEDO (g)	604
VOLUMEN DEL SUELO HUMEDO (cm³)	2329
P. UNITARIO SUELO HUMEDO (kg/m³)	2172

| DATOS DE EXPANSIÓN. |
MOLDE No.	110			
FECHA	HORAS	DÍAS	Lec. Ext	Expansión %
15-02-18	11:20	0	0	0
16-02-18	11:20	1	1	0.02
17-02-18	11:20	2	2	0.05

HUMEDAD

N° DEL RECIPIENTE	5	72
HUMEDAD INICIAL	120	114.17
Peso SUELO HUMEDO + RECIPIENTES (g)	177.5	104.93
Peso del RECIPiente (g)	25.8	26.06
Peso del SUELO SECO (g)	151.6	78.87
% DE HUMEDAD	33.1	11.7
% DE HUMEDAD PROMEDIO	7.5	
P. UNITARIO SUELO SECO (kg/m³)	2172	

C.B.R. DATOS DEL ENSAYO DE PENETRACIÓN

Molde No.	110		
Penetración pulg	Lec. Ext. 0.0001	Carga. Kg	Reintent. Kg/cm²
0.000	0	0	0
0.020	10	44.6	2.3
0.050	21	93.7	4.8
0.070	31	136.3	7.1
0.100	41	182.9	9.3
0.125	50	223.0	11.4
0.150	56	249.6	12.7
0.170	63	281.0	14.3
0.200	70	312.2	15.9
0.250	90	401.4	20.5
0.300	106	481.7	24.6
0.500	129	576.3	29.4

CBR INALTERADO CORREGIDO (%).

| CBR A 0.100" | 13.3 |
| CBR A 0.200" | 15.1 |

<table>
<thead>
<tr>
<th>EQUPO UTILIZADO</th>
<th>MARCA/REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanza Electrónica de 300x0.01gr</td>
<td>LEXUSMIKA</td>
</tr>
<tr>
<td>Balanza Electrónica de 300x0.1gr</td>
<td>LEXUSMIKA</td>
</tr>
<tr>
<td>Tamices Estándar</td>
<td></td>
</tr>
<tr>
<td>Cazoleta de Cenagadora</td>
<td></td>
</tr>
<tr>
<td>Herramientas</td>
<td></td>
</tr>
</tbody>
</table>

CBR DE SUELOS COMPACTADOS EN EL LABORATORIO Y SOBRE MUESTRA INALTERADA

<table>
<thead>
<tr>
<th>MUESTRA INALTERADA</th>
<th>MUESTRA No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No MOLDE</td>
<td>10</td>
</tr>
<tr>
<td>PESO MOLDE + SUELO HÚMEDO (g)</td>
<td>12476</td>
</tr>
<tr>
<td>PESO DEL MOLDE (g)</td>
<td>7442</td>
</tr>
<tr>
<td>PESO DEL SUELO HÚMEDO (g)</td>
<td>5034</td>
</tr>
<tr>
<td>VOLUMEN DEL SUELO HÚMEDO (cm³)</td>
<td>2.495</td>
</tr>
<tr>
<td>P. UNITARIO SUELO HÚMEDO (kg/m³)</td>
<td>2.023</td>
</tr>
</tbody>
</table>

DATOS DE EXPANSIÓN

<table>
<thead>
<tr>
<th>MOLDE No.</th>
<th>FECHA</th>
<th>HORÁ</th>
<th>DÍAS</th>
<th>Lec. Ext</th>
<th>Expansión %</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15-02-18 14:43</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>16-02-18 14:43</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>17-02-18 14:43</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

HUMEDAD

<table>
<thead>
<tr>
<th>% DEL RECIPiente</th>
<th>50</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMEDAD</td>
<td>INICIAL</td>
<td>FINAL</td>
</tr>
<tr>
<td>PESO SUELO HÚMEDO + RECIP. (g)</td>
<td>165.93</td>
<td>133.13</td>
</tr>
<tr>
<td>PESO SUELO SECO + RECIP. (g)</td>
<td>135.51</td>
<td>157.95</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>110.3</td>
<td>121.62</td>
</tr>
<tr>
<td>% DE HUMEDAD</td>
<td>11.5</td>
<td>13.8</td>
</tr>
<tr>
<td>P. UNITARIO SUELO SECO (kg/m³)</td>
<td>1.015</td>
<td></td>
</tr>
</tbody>
</table>

ABSORCIÓN

<table>
<thead>
<tr>
<th>MOLDE No.</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO SUELO HÚMEDO + MOLDE + BASE (g)</td>
<td>12953</td>
</tr>
<tr>
<td>PESO MOLDE + BASE (g)</td>
<td>7442</td>
</tr>
<tr>
<td>PESO DEL ÁGUA ABSORVIDA (g)</td>
<td>463</td>
</tr>
<tr>
<td>% DEL ÁGUA ABSORVIDA</td>
<td>9.6</td>
</tr>
</tbody>
</table>

C.B.R. DATOS DEL ENSAYO DE PENETRACIÓN

<table>
<thead>
<tr>
<th>Penetración (cm)</th>
<th>Lec. Ext. 0,0001</th>
<th>Carga (kg)</th>
<th>Resist. 0,0001 (kN/m²)</th>
<th>Lec. Ext. 0,001</th>
<th>Carga (kg)</th>
<th>Resist. 0,001 (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.025</td>
<td>8.0</td>
<td>35.7</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.050</td>
<td>11.0</td>
<td>49.1</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.075</td>
<td>15.0</td>
<td>66.9</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.100</td>
<td>18.0</td>
<td>89.3</td>
<td>4.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.125</td>
<td>20.0</td>
<td>89.2</td>
<td>4.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.150</td>
<td>22.0</td>
<td>98.1</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.175</td>
<td>24.0</td>
<td>107.0</td>
<td>5.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.200</td>
<td>26.0</td>
<td>116.0</td>
<td>5.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.300</td>
<td>28.0</td>
<td>101.6</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.400</td>
<td>30.0</td>
<td>200.7</td>
<td>10.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.500</td>
<td>32.0</td>
<td>245.3</td>
<td>12.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

EQUIPO UTILIZADO
- **MARCAS/REFERENCIA:**
 - Balance Electrónico de 300 x 0.1 g: LEXUS M3/K-A
 - Balance Electrónico de 500 x 0.5 g: LEXUS M3/K-A

CBR INALTERADO CORREGIDO (%):

- CBR A 0.100°: 5.8
- CBR A 0.200°: 5.6