Please use this identifier to cite or link to this item: http://repository.ucc.edu.co/handle/ucc/7652
Exportar a:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArango Santander, Santiago-
dc.creatorCano Melguizo, Alejandro-
dc.creatorCastro Floréz, Sergio Andrés-
dc.date.accessioned2019-03-04T21:43:50Z-
dc.date.available2019-03-04T21:43:50Z-
dc.date.issued2019-01-22-
dc.identifier.urihttp://repository.ucc.edu.co/handle/ucc/7652-
dc.descriptionObjetivo: Evaluar la adhesión bacteriana a la superficie de arcos de acero inoxidable de uso ortodóncico modificados siguiendo un enfoque biomimético. Introducción: La formación y maduración de la biopelícula oral en las superficies dentales y componentes de la aparatología ortodóncica son la causa primaria de un gran número de enfermedades orales y deterioro de los materiales. Se han propuesto numerosas alternativas para disminuir la adhesión bacteriana a los materiales, incluyendo la modificación de la superficie de los materiales. Existen diversas técnicas para modificar la superficie de los materiales, incluyendo la fotolitografía y la litografía blanda. Estas técnicas han sido evaluadas en diferentes áreas y han mostrado su efectividad para modificar diversas superficies y se ha observado reducción en la adhesión bacteriana a dichas superficies modificadas. No obstante los resultados publicados, este tipo de estrategias no han sido suficientemente estudiadas en el área de la odontología, en general, y de la ortodoncia, en particular. Por lo tanto, se plantea evaluar la reducción en la adhesión bacteriana a la superficie de arcos de acero inoxidable de uso ortodóncico modificados siguiendo un enfoque biomimético, el cual podría contribuir a mejorar la compatibilidad de los materiales que se usan en ortodoncia. Materiales y Métodos: El estudio fue aprobado previamente por el comité de ética de la Universidad Cooperativa de Colombia. El grupo experimental se compuso de fragmentos de alambre de acero inoxidable 316L de dimensiones 0,017 x 0,025 pulgadas y 10 mm de longitud. Para la técnica de litografía blanda, se fabricó un stamp de polidimetilsiloxano (PDMS), el cual se utilizó para duplicar la hoja de la planta Colocasia. Para la transferencia de la topografía de la hoja a los alambres de ortodoncia, se utilizó sol de sílice sintetizado por el método sol-gel de una fase. Se utilizaron fragmentos de alambre de dimensiones iguales sin modificar como grupo control. La superficie de los alambres modificados y sin modificar fue caracterizada mediante hidrofobicidad y rugosidad. La caracterización de la adhesión bacteriana a la superficie de los alambres modificados y sin modificar fue realizada con Streptococcus mutans Resultados y conclusiones: La transferencia de patrones de la colocasia a los fragmentos de arcos de acero inoxidable utilizando el sol de sílice fue exitoso. Se presentaron diferencias estadísticamente significativas respecto al ángulo de contacto y rugosidad entre los arcos tratados y no tratados. Se encontró también una reducción significativa en la adhesión de Streptococcus mutans a los alambres modificados.es
dc.description.abstractObjective: To evaluate the bacterial adhesion to the surface of orthodontic modified stainless steel arches following a biomimetic approach. Introduction: The formation and maturation of oral biofilm on dental surfaces and components of orthodontic appliances are the primary cause of a large number of oral diseases and deterioration of materials. Numerous alternatives have been proposed to decrease bacterial adhesion to materials, including modification of the surface of the materials. There are several techniques to modify the surface of materials, including photolithography and soft lithography. These techniques have been evaluated in different areas and have shown their effectiveness in modifying various surfaces and a reduction in bacterial adhesion to said modified surfaces has been observed. Despite the published results, these types of strategies have not been sufficiently studied in the area of ​​dentistry, in general, and of orthodontics, in particular. Therefore, it is proposed to evaluate the reduction in bacterial adhesion to the surface of modified orthodontic stainless steel arches following a biomimetic approach, which could contribute to improve the compatibility of the materials used in orthodontics. Materials and Methods: The study was previously approved by the ethics committee of the Universidad Cooperativa de Colombia. The experimental group consisted of fragments of 316L stainless steel wire of dimensions 0.017 x 0.025 inches and 10 mm in length. For the soft lithography technique, a stamp of polydimethylsiloxane (PDMS) was made, which was used to duplicate the leaf of the Colocasia plant. For the transfer of the topography of the leaf to the orthodontic wires, silica sol synthesized by the sol-gel method of a phase was used. Fragments of wire of equal dimensions were used without modification as a control group. The surface of the modified and unmodified wires was characterized by hydrophobicity and roughness. The characterization of the bacterial adhesion to the surface of the modified and unmodified wires was carried out with Streptococcus mutans Results and conclusions: The transfer of patterns of the colocasia to the fragments of stainless steel arches using the silica sol was successful. Statistically significant differences were presented regarding the contact angle and roughness between the treated and untreated arches. A significant reduction in the adhesion of Streptococcus mutans to the modified wires was also found.es
dc.format.extent13 p.es
dc.publisherUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Especialización en ortodoncia, Medellín y Envigadoes
dc.subjectAdhesión bacterianaes
dc.subjectLitografía blandaes
dc.subjectBiomiméticaes
dc.subjectAcero inoxidablees
dc.subject.classificationTG 2018 EOF 7652es
dc.subject.otherBacterial adhesiones
dc.subject.otherSoft lithographyes
dc.subject.otherBiomimeticses
dc.subject.otherStainless steeles
dc.titleEvaluación de la adhesión bacteriana a la superficie de arcos de acero inoxidable de uso ortodóncico modificados siguiendo un enfoque biomiméticoes
dc.typeTrabajos de grado - Posgradoses
dc.rights.licenseAtribución – No comercial – Sin Derivares
dc.publisher.departmentMedellínes
dc.publisher.programEspecialización en Ortodonciaes
dc.creator.mailalejandro.canom@campusucc.edu.coes
dc.creator.mailsergio.castro@campusucc.edu.coes
dc.identifier.bibliographicCitationCano-Melguizo, A.; Castro-Florez, S. A. y Arango-Santander, S. (2018). Evaluación de la adhesión bacteriana a la superficie de arcos de acero inoxidable de uso ortodóncico modificados siguiendo un enfoque biomimético. (Tesis de posgrado). Recuperado de: http://repository.ucc.edu.co/handle/ucc/7652es
dc.rights.accessRightsrestrictedAccesses
dc.source.bibliographicCitationBahije L, Benyahia H, El Hamzaoui S, Ebn Touhami M, Bengueddour R, Rerhrhaye W, et al. Behavior of NiTi in the presence of oral bacteria: corrosion by Streptococcus mutans. Int Orthod. 2011;9(1):110–9.es
dc.source.bibliographicCitationRenner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36(5):347–55.es
dc.source.bibliographicCitationLuengo F, Bascones A. Evidencia microbiana de la periimplantitis, factores de riesgo coadyuvante s, diagnóstico y tratamiento según los protocolos científicos. Av Periodon Implant. 2004;16(3):143–156.es
dc.source.bibliographicCitationArango-santander S, Luna-ossa CM. Stainless Steel : Material Facts for the Orthodontic Practitioner. Rev Nal Odont. 2015;11(20):11–3.es
dc.source.bibliographicCitationBiswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Adv Colloid Interface Sci. 2012;170(1–2):2–27.es
dc.source.bibliographicCitationArango S, Peláez-Vargas A, García C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings. 2012;3(1):1–15.es
dc.source.bibliographicCitationXia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998;28(12):153–84.es
dc.source.bibliographicCitationWeibel DB, Diluzio WR, Whitesides GM. Microfabrication meets microbiology. Nat Rev Microbiol. 2007;5(3):209–18.es
dc.source.bibliographicCitationBhadra CM, Khanh Truong V, Pham VTH, Al Kobaisi M, Seniutinas G, Wang JY, et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep. 2015;5:16817.es
dc.source.bibliographicCitationKoch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans A Math Phys Eng Sci. 2009;367(1893):1487–509.es
dc.source.bibliographicCitationDurán A, Conde A, Gómez Coedo A, Dorado T, García C, Ceré S, et al. Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices. J Mater Chem. 2004 Jul 14;14(14):1282–2290.es
dc.source.bibliographicCitationSingh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, et al. Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci. 2014;214,:17–37.es
dc.source.bibliographicCitationNaghili H, Tajik H, Mardani K, Razavi Rouhani SM, Ehsani A, Zare P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet Res forum an Int Q J. 2013;4(3):179–83.es
dc.source.bibliographicCitationAl Qahtani WMS, Schille C, Spintzyk S, Al Qahtani MSA, Engel E, Geis-Gerstorfer J, et al. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed Eng / Biomed Tech. 2017;62(1):75–87.es
dc.source.bibliographicCitationWang HT, Nafday OA, Haaheim JR, Tevaarwerk E, Amro NA, Sanedrin RG, et al. Toward conductive traces: Dip Pen Nanolithography® of silver nanoparticle-based inks. Appl Phys Lett. 2008;93:143105.es
dc.source.bibliographicCitationCarvalho A, Pelaez-Vargas A, Gallego-Perez D, Grenho L, Fernandes MH, De Aza AH, et al. Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dent Mater. 2012;28(12):1250–60.es
dc.source.bibliographicCitationLaranjeira MS, Carvalho Â, Pelaez-Vargas A, Hansford D, Ferraz MP, Coimbra S, et al. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications. Sci Technol Adv Mater. 2014;15(2):025001.es
dc.source.bibliographicCitationArun N, Sharma A, Pattader PSG, Banerjee I, Dixit HM, Narayan KSS, et al. Electric-Field-Induced Patterns in Soft Viscoelastic Films: From Long Waves of Viscous Liquids to Short Waves of Elastic Solids. Sensors Actuators A Phys. 2006;102(25):254502.es
dc.source.bibliographicCitationBorteh H, Ferrell N, Butler R, Olesik S, Hansford D. Electroless deposition of gold nanoparticles over silicon-based substrates. In: Materials Research Society Symposium Proceedings. 2007. p. 0990-B08-17.es
dc.source.bibliographicCitationButler RT, Ferrell NJ, Hansford DJ. Spatial and geometrical control of silicification using a patterned poly-l-lysine template. Appl Surf Sci. 2006;252:7337–42.es
dc.source.bibliographicCitationPelaez-Vargas a, Gallego-Perez D, Fernandes M. H, Hansford D, Monteiro FJ. Microstructured coatings to study the behavior of osteoblast-like cells on hard materials. Bone. 2011;48:s104–23.es
dc.source.bibliographicCitationKitzmiller J, Beversdorf D, Hansford D. Fabrication and testing of microelectrodes for small-field cortical surface recordings. Biomed Microdevices. 2006;8:81–5.es
dc.source.bibliographicCitationFerrell N, Woodard J, Hansford D. Fabrication of polymer microstructures for MEMS: Sacrificial layer micromolding and patterned substrate micromolding. Biomed Microdevices. 2007;9:815–21.es
dc.source.bibliographicCitationPelaez-Vargas A, Ferrell N, Fernandes MH, Hansford DJ, Monteiro FJ. Cellular Alignment Induction during Early In Vitro Culture Stages Using Micropatterned Glass Coatings Produced by Sol-Gel Process. Key Eng Mater. 2009;303–6.es
dc.source.bibliographicCitationChung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases. 2007;2:89–94.es
dc.source.bibliographicCitationVasudevan R, Kennedy AJ, Merritt M, Crocker FH, Baney RH. Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surfaces B Biointerfaces. 2014;117:225–32.es
dc.source.bibliographicCitationXu LC, Siedlecki CA. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater. 2012;8:72–81.es
dc.source.bibliographicCitationTran KTM, Nguyen TD. Lithography-based methods to manufacture biomaterials at small scales. J Sci Adv Mater Devices. 2017;doi: 10.1016/ j.jsamd.2016.12.001.es
dc.source.bibliographicCitationBixler GD, Theiss A, Bhushan B, Lee SC. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci. 2014;419:114–33.es
dc.source.bibliographicCitationYang H, Pi P, Cai ZQ, Wen X, Wang X, Cheng J, et al. Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol-gel process. Appl Surf Sci. 2010;256:4095–4102.es
dc.source.bibliographicCitationHosseinalipour SM, Ershad-langroudi A, Hayati AN, Nabizade-Haghighi AM. Characterization of sol-gel coated 316L stainless steel for biomedical applications. Prog Org Coatings. 2010;67:371–4.es
dc.source.bibliographicCitationSantos O, Nylander T, Rosmaninho R, Rizzo G, Yiantsios S, Andritsos N, et al. Modified stainless steel surfaces targeted to reduce fouling - Surface characterization. J Food Eng. 2004;64:63–79.es
dc.source.bibliographicCitationWang M, Wang Y, Chen Y, Gu H. Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology. Appl Surf Sci. 2013;268:73–8.es
dc.source.bibliographicCitationSatou J, Fukunaga A, Satou N, Shintani H, Okuda K. Streptococcal Adherence on Various Restorative Materials. J Dent Res. 1988;67:588–91.es
dc.source.bibliographicCitationMay RM, Hoffman MG, Sogo MJ, Parker AE, O’Toole GA, Brennan AB, et al. Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs. Clin Transl Med. 2014;3(8):1–9.es
Appears in Collections:Ortodoncia

Files in This Item:
File Description SizeFormat 
2018_modificación_arcos_acero.pdfTrabajo de grado265.58 kBAdobe PDFView/Open Request a copy
2018_modificación_arcos_acero-LicenciaUso.pdfLicencia de uso447.15 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.